On *j*-algebras and homogeneous Kähler manifolds

Kazufumi NAKAJIMA (Received June 4, 1984)

Introduction.

The notion of *j*-algebras introduced by Pyatetskii-Shapiro played an important role in the theory of realization of homogeneous bounded domains as homogeneous Siegel domains. Vinberg, Gindikin and Pyatetskii-Shapiro [16] stated that the Lie algebra of a transitive holomorphic transformation group of a homogeneous bounded domain admits a structure of an effective proper *j*-algebra and that every effective proper *j*-algebra can be regarded as the Lie algebra of a transitive holomorphic transformation group of a homogeneous Siegel domain of the second kind. In this paper, we remove the properness and study the structure of homogeneous complex manifolds corresponding to effective *j*-algebras.

By an effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$ we mean a system of a Lie algebra \mathfrak{g} , a subalgebra \mathfrak{k} , an endomorphism *j*, and a linear form ω satisfying certain conditions. (For a precise definition, see § 3.) Let *G* be a connected Lie group with \mathfrak{g} as its Lie algebra and let *K* be the connected subgroup corresponding to \mathfrak{k} . Then *K* is closed and *G*/*K* admits a *G*-invariant Kähler structure. The homogeneous space *G*/*K* is said to be the homogeneous complex manifold associated with the effective *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. We shall prove the following theorems.

THEOREM A. Let G/K be the homogeneous complex manifold associated with an effective j-algebra $(\mathfrak{g}, \mathfrak{k}, j, \omega)$. Then G/K is biholomorphic to a product of a homogeneous bounded domain M_1 and a compact simply connected homogeneous complex manifold M_2 .

THEOREM B. Conversely, let M_1 be a homogeneous bounded domain and let M_2 be a compact simply connected homogeneous complex manifold. Let G be a connected Lie group acting on $M_1 \times M_2$ transitively, effectively and holomorphically. Assume further that $M_1 \times M_2$ admits a G-invariant Kähler metric. Then the Lie algebra of G admits a structure of an effective j-algebra so that the associated homogeneous complex manifold coincides with $M_1 \times M_2$.

Gindikin, Pyatetskii-Shapiro and Vinberg [17] stated that Theorem A was essentially proved in [16]. But it seems to the author that there is no