On the energy decay of a weak solution of the M. H. D. equations in a three-dimensional exterior domain

Hideo Kozono

(Received May 19, 1986, Revised September 12, 1986)

Introduction

Let O be a bounded domain in \mathbb{R}^3 with smooth boundary ∂O . We set $\Omega = \mathbb{R}^3 - O$. For simplicity, we assume that Ω is simply connected. In Q : = $\Omega \times (0, \infty)$, we consider the following magnetohydrodynamic(M. H. D.) equations;

	$\partial_t u - \Delta u + (u, \nabla) u + B \times \operatorname{rot} B + \nabla \pi = f$	in <i>Q</i> ,
(M. H. D.)	$\partial_t B - \varDelta B + (u, \nabla) B - (B, \nabla) u = 0$	in <i>Q</i> ,
	div $u=0$, div $B=0$	in <i>Q</i> ,
	$u=0, B \bullet v=0, \operatorname{rot} B \times v=0,$	on $\partial \Omega \times (0, \infty)$,
	$u \mid_{t=0} = u_0$, $B \mid_{t=0} = B_0$.	

Here $u = u(x, t) = (u^1(x, t), u^2(x, t), u^3(x, t)), B = B(x, t) = (B^1(x, t), B^2(x, t), B^3(x, t))$ and $\pi = \pi(x, t)$ denote respectively the unknown velocity field of the fluid, magnetic field and pressure of the fluid, $f = f(x, t) = (f^1(x, t), f^2(x, t), f^3(x, t))$ denotes the given external force, $u_0 = u_0(x) = (u_0^1(x), u_0^2(x), u_0^3(x))$ and $B_0 = B_0(x) = (B_0^1(x), B_0^2(x), B_0^3(x))$ denote the given initial data and ν denotes the unit outward normal on $\partial\Omega$.

Our problem reads as follows.

PROBLEM Construct a weak solution $\{u, B\}$ of (M. H. D.) on $(0, \infty)$ such that $E(t) := (1/2) \int_{\Omega} (|u(x, t)|^2 + |B(x, t)|^2) dx$

tends to zero as $t \rightarrow \infty$.

In this paper, we solve this problem affimatively. To this end, we shall use the methods developed by Masuda [5] and Sohr [10] in the case of the Navier-Stokes equations.

As is shown by Masuda [5, Corollary 2], we shall show at first that if $\{u, B\}$ is a weak solution of (M. H. D.) such that E(t) tends to some constant E as $t \rightarrow \infty$, then E=0. For such a weak solution, we shall