On the energy decay of a weak solution of the
 M. H. D. equations in a three-dimensional exterior domain

Hideo Kozono

(Received May 19, 1986, Revised September 12, 1986)

Introduction

Let O be a bounded domain in \boldsymbol{R}^{3} with smooth boundary $\partial \mathrm{O}$. We set $\Omega=\boldsymbol{R}^{3}-\mathrm{O}$. For simplicity, we assume that Ω is simply connected. In Q $:=\Omega \times(0, \infty)$, we consider the following magnetohydrodynamic (M. H. D.) equations ;
(M. H. D.) $\operatorname{div} u=0, \operatorname{div} B=0$

$$
\begin{array}{ll}
\partial_{t} u-\Delta u+(u, \nabla) u+B \times \operatorname{rot} B+\nabla \pi=f & \text { in } Q, \\
\partial_{t} B-\Delta B+(u, \nabla) B-(B, \nabla) u=0 & \text { in } Q,
\end{array}
$$

$$
u=0, B \cdot \nu=0, \operatorname{rot} B \times \nu=0, \quad \text { on } \partial \Omega \times(0, \infty),
$$

$$
\left.u\right|_{t=0}=u_{0},\left.B\right|_{t=0}=B_{0} .
$$

in Q,
on $\partial \Omega \times(0, \infty)$,

Here $u=u(x, t)=\left(u^{1}(x, t), u^{2}(x, t), u^{3}(x, t)\right), B=B(x, t)=\left(B^{1}(x, t), B^{2}\right.$ $\left.(x, t), B^{3}(x, t)\right)$ and $\pi=\pi(x, t)$ denote respectively the unknown velocity field of the fluid, magnetic field and pressure of the fluid, $f=f(x, t)=$ $\left(f^{1}(x, t), f^{2}(x, t), f^{3}(x, t)\right)$ denotes the given external force, $u_{0}=u_{0}(x)=$ $\left(u_{0}^{1}(x), u_{0}^{2}(x), u_{0}^{3}(x)\right)$ and $B_{0}=B_{0}(x)=\left(B_{0}^{1}(x), B_{0}^{2}(x), B_{0}^{3}(x)\right)$ denote the given initial data and ν denotes the unit outward normal on $\partial \Omega$.

Our problem reads as follows.
Problem
Construct a weak solution $\{u, B\}$ of (M. H. D.) on ($0, \infty$) such that

$$
E(t):=(1 / 2) \int_{\Omega}\left(|u(x, t)|^{2}+|B(x, t)|^{2}\right) d x
$$

tends to zero as $t \rightarrow \infty$.
In this paper, we solve this problem affimatively. To this end, we shall use the methods developed by Masuda [5] and Sohr [10] in the case of the Navier-Stokes equations.

As is shown by Masuda [5, Corollary 2], we shall show at first that if $\{u, B\}$ is a weak solution of (M. H. D.) such that $E(t)$ tends to some constant E as $t \rightarrow \infty$, then $E=0$. For such a weak solution, we shall

