A note on a theorem of Wada

Jørn B. Olsson

(Received March 10, 1986, Revised November 10, 1986)

In his papers [6], [7], [8] T. Wada introduced and studied two new invariants, which may be associated with a *p*-block *B* of a finite group *G*. If *B* is considered as an ideal in the group algebra *FG*, where *F* is an algebraically closed field of characteristic p>0 and *P* is a *p*-Sylow subgroup of *G*, then m(B) (or n(B)) is the number of indecomposable summands of *B* when restricted to the diagonal group $\Delta(P)$ (or $P \times P$). A main result of [8] was that if $D = \delta(B)$ is a defect group of *B* and if $D \leq Z(P)$, then

 $(*) \quad |P:D|k(B) \leq m(B),$

where k(B) is the number of ordinary characters in *B*. Some examples were given to show that (*) does not hold in general. In this note we prove a result which has as a consequence the following obvious generalization of Wada's theorem :

Let B be a p-block with $\delta(B) = D$. If P_1 is a p-Sylow subgroup of $DC_G(D)$ then

$$|P_1: D|k(B) \leq m(B).$$

By Brauer's second main theorem on blocks k(B) may be decomposed according to the subsections of B (See [4], IV, § 6). To prove our main result we decompose m(B) in a similar way and compare the corresponding summands of k(B) and m(B).

Let *P* be a *p*-Sylow subgroup of *G* and *B* a block with $\delta(B) = D$. Then there is an integer v(B) such that

(1)
$$\dim_F B = p^{2a-d}v(B)$$

(see [2] or [8]). A subsection for G is a pair (π, b_{π}) where π is a *p*-element in G and b_{π} a block of $C_G(\pi)$. If $b_{\pi}^G = B$, we call (π, b_{π}) a *B*-subsection.

If (π, b_{π}) is a subsection, define

(2)
$$m(\pi, b_{\pi}) := \frac{1}{|P|} |\pi^{G} \cap P| \dim b_{\pi}.$$

(here π^{G} is the *G*-conjugacy class containing π).