On some properties of γ_p -summing operators in Banach spaces

Yasuji TAKAHASHI and Yoshiaki OKAZAKI (Received October 7, 1985, Revised May 16, 1986)

§1. Introduction

The aim of this paper is to give new characterizations of Banach spaces which are of stable type p and of SQ_p type (or of S_p type) by the properties of γ_p -summing operators (0 .

The γ_p -summing operator was introduced by Thang and Tien [23]. Let E, F be Banach spaces and 0 . Denote by <math>L(E, F) the set of all bounded linear operators from E into F. Then an operator T in L(E, F) is γ_p -summing if for each sequence $\{x_n\} \subset E$ with $\sum_n |< x_n, x' > |^p < \infty$ for all $x' \in E'$, the series $\sum_n T(x_n)\theta_n^{(p)}$ converges almost surely (a.s.) in F, where $\{\theta_n^{(p)}\}$ is a sequence of independent identically distributed real random variables with the characteristic function (ch.f.) $\exp(-|t|^p), t \in R$. Denote by $\prod_{\gamma_p}(E, F)$ the set of all γ_p -summing operators from E into F.

The γ_p -Radonifying operator was introduced by Linde, Mandrekar and Weron [6] as follows. Let p be 1 and <math>1/p + 1/p' = 1. Then an operator T in $L(L_{p'}, F)$ is γ_p -Radonifying if exp $(-\|T'(x')\|^p)$, $x' \in F'$, is the ch. f. of a Radon measure on F, where T' is the adjoint of T. Denote by $\sum_p (L_{p'}, F)$ the set of all γ_p -Radonifying operators from $L_{p'}$ into F.

The classification problem of type *p*-stable Banach spaces, 1 , wasstudied by Chobanjan and Tarieladze [1], Kwapien [4], Linde, Mandrekarand Weron [6], Linde, Tarieladze and Chobanjan [7], Mandrekar andWeron [12], Mouchtari [15] and Thang and Tien [23]. The classifica $tions by these authors are all based upon the properties of <math>\gamma_p$ -Radonifying operators. In this paper, we shall adopt the γ_p -summing operators for such classifications. The reason why we use the γ_p -summing operators instead of γ_p -Radonifying operators will become clear through the discussions in Sections 3 and 4. Here we point out that $\prod_{\gamma_p}(E, F)$ has the so-called ideal property, that is, if $T \in \prod_{\gamma_p}(E, F)$, then $\text{TS} \in \prod_{\gamma_p}(G, F)$ for every Banach space G and every $S \in L(G, E)$. But in general, for $1 , <math>\sum_p (L_{p'}, F)$ does not have the ideal property even in the case $G = L_{p'}$. In the classification of type *p*-stable Banach spaces, 1 , Mandrekar and Weron