Perfect Sets and Sets of Multiplicity

Robert KAUFMAN (Received July 26, 1985)

- § 1. The class of closed, uncountable sets and the class of closed sets of multiplicity (M-sets) have been very extensively investigated; each occurs as the class of removable sets for some problems in analysis. We describe some examples in which the first class is represented, roughly speaking, by the second. Let F be a compact set in Euclidean space and f a continuous map of F onto a Cantor set C. We require that
- (a) For each element x of C, $f^{-1}(x)$ is a U-set (that is, not an M-set). The same is then true for $f^{-1}(A)$, whenever A is a closed, countable subset of C.
- (b) For each perfect set P in C, $f^{-1}(P)$ is an M-set. We call such functions c. m. mappings (cardinality-multiplicity mappings) simply to have a name for them. The thee examples of c. m. mappings that follow are based on different principles and have specific properties that cannot be attained by a single construction. The idea of representing classes of sets by inverse images is from [3]; further comparisons are postponed to § 5.
- § 2. A simple example in \mathbb{R}^2 . In this example and the next one, property (b) occurs in a stronger, somewhat peculiar form:
- (b') For each perfect set P in C, $f^{-1}(P)$ carries a probability measure μ , such that $\mu * \mu$ is absolutely continuous. Thus $f^{-1}(P)$ is an M_0 -set.
- Let C be represented as a closed set on the arc $0 \le \theta \le \pi$ of the unit circle, let F be the set $\{re^{i\theta}: \theta \in C, 1 \le r \le 2\}$ and let $f(re^{i\theta}) = \theta$, so that (a) is obvious. As for (b'), let P be a perfect set in C, so that P carries a continuous probability measure λ . Then $f^{-1}(P)$ carries the measure $\mu = \lambda$ $(d\theta)dr$, and assertion (b') is simply an observation about the convolution of the linear measures on line segments which aren't parallel.
- § 3. An example in \mathbb{R}^1 . We begin with an outline. To each element x in C we attach a probability measure $\mu(x)$, whose support, say F(x), is a U-set; moreover $\mu(x)*\mu(y)$ is absolutely continuous whenever $x \neq y$. Then the function f is defined so that $f^{-1}(x) = F(x)$ for each x in C. The proof that f is single-valued and continuous is the most difficult point, and requires a detour in the method.