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1. Introduction In their paper [1], Aschbacher and Guralnick proved
that any finite group G is generated by a pair of conjugate solvable
subgroups. The purpose of this note is to show that we can impose some
conditions on how the generating subgroups are embedded in G . More
precisely, we will prove the following theorem.

THEOREM Let G be any finite group. Then, there is solvable
subgroup S such that

(1) G=<S, S^{g}>for some element g of G,

(2) the conjugacy class of the subgroup S is stable under the group
Aut G of automorphisms of G, and

(3) N_{G}(S)=S.

In this note, a subgroup which satisfies the second condition will be
called a (^{*}) -subgroup of G . Thus, a subgroup H is a (^{*}) -subgroup of G if,
for any automorphism \sigma of G , there is an element x , depending on \sigma , such
that

\sigma(H)=x^{-1}Hx .

The conditions (2) and (3) impose some restrictions on the way the
subgroup S is embedded in G . Since every maximal solvable subgroup of
any finite group is self-normalizing, to impose the condition (3) alone is
trivial, but to put the two conditions (2) and (3) together on S seems to be
not so trivial. It may be possible to impose further conditions on the
embedding of S or on the properties of the element g.

We add the following remarks. Let G be any finite group. Then, a
conjugacy class of solvable subgroups which satisfies the conditions (1), (2),

and (3) is not necessarily unique. It follows from elementary group theory
([2] , p. 99) that the normalizer of an S_{p}-subgroup is a self-normalizing (^{*})

-subgroup. In particular, let H be the normalizer of an S_{2} subgroup of G .
(If the order |G| is odd, we have H=G.) By the Feit-Thompson
Theorem, H is solvable. It is fairly obvious that the group G is
generated by all the conjugates of H , and that there are groups G in
which any pair of conjugates of H generates a proper subgroup of G .


