Generalized variation and translation operator in some sequence spaces

J. MUSIELAK and A. WASZAK (Received August 5, 1987, Revised February 23, 1988)

Abstract. There are defined and investigated some spaces of sequences provided with two-modular structure given by generalized variations and the translation operator. The results are applied to obtain an approximation theorem by means of translated sequences.

1. Let $x=(t_i)=(t_i)_{i=0}^{\infty}$ be a sequence of real numbers. We denote also $(x)_j=t_j$ for j=0, 1, 2, ... We introduce two auxiliary notations: this of the Φ -variation of x and that of the sequential modulus of x.

1.1. Let X be the space of all real sequences and let Φ be a φ -function (see e.g. [4], 1.9). The Φ -variation $w_{\Phi}(x)$ of $x \in X$ is defined as

$$w_{\Phi}(x) = \sup_{(n_i)} \sum_{i=1}^{\infty} \Phi(|t_{n_i} - t_{n_{i-1}}|),$$

where the supremum runs through all increasing subsequences (n_i) of indices (see [2]). w_{Φ} is a pseudomodular in X defining the modular space

$$X_{\Phi} = X_{w_{\Phi}} = \{ x \in X : w_{\Phi}(\lambda x) \longrightarrow 0 \text{ as } \lambda \longrightarrow 0_{+} \}$$

(see [7], [5] and also [8]). $\|\cdot\|_{\Phi}$ will denote the Luxemburg pseudonorm in X_{Φ} (see [4]). It is easily seen that $X_{\Phi} \subseteq c$, where *c* is the space of convergent sequences, and X_{Φ} is strongly modular complete and complete in the norm (see [2] and [5]).

1.2. Given any sequence $x = (t_i)_{i=0}^{\infty}$, we write

$$(\tau_m x)_j = \begin{cases} t_j & \text{for } j < m, \\ t_{m+j} & \text{for } j \ge m, \end{cases}$$

where m, j=0, 1, 2, ... (see [3], also [4], 7.17). The sequence $\tau_m x = ((\tau_m x)_j)_{j=0}^{\infty}$ is called the *m*-translation of the sequence *x*.

1.3. The sequential modulus of the sequence $x = (t_i)_{i=0}^{\infty}$ is defined as

$$\omega(x, r) = \sup_{m \ge r} \sup_{i} |(\tau_m x)_i - t_i|,$$

where $r = 0, 1, 2, \dots$ Obviously, we have

$$\omega(x, r) = \sup_{m \ge r} \sup_{i \ge m} |t_{m+i} - t_i|$$