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Generalized variation and translation operator
in some sequence spaces
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Abstract. There are defined and investigated some spaces of
r

sequences provided with tw0-modular structure given by generalized varia-
tions and the translation operator. The results are applied to obtain an
approximation theorem by means of translated sequences.

1. Let x=(t_{i})=(t_{i})_{i=0}^{\infty} be a sequence of real numbers. We denote also
(x)_{j}=t_{j} for j=0,1,2 , \ldots We introduce two auxiliary notations: this of
the \Phi-variation of x and that of the sequential modulus of x .

1. 1. Let X be the space of all real sequences and let \Phi be a \varphi -function
(see e . g . [4], 1. 9). The \Phi variation w_{\Phi}(x) of x\in X is defined as

w_{\Phi}(\chi)=su(n_{l}\theta_{i=1}^{\Sigma^{\infty}\Phi(|t_{n_{i}}-t_{n_{i-1}}|)} ,

where the supremum runs through all increasing subsequences (n_{i}) of in-
dices (see [2]). w_{\Phi} is a pseudomodular in X defining the modular space

X_{\Phi}=X_{w_{\Phi}}= {x\in X:w_{\Phi}(\lambda x)- 0 as \lambdaarrow 0_{+} }

(see [7], [5] and also [8]). ||\cdot||_{\Phi} will denote the Luxemburg pseudonorm in
X_{\Phi} (see [4]). It is easily seen that X_{\Phi}\subset c , where c is the space of conver-
gent sequences, and X_{\Phi} is strongly modular complete and complete in the
norm (see [2] and [5]).

1. 2. Given any sequence x=(t_{i})_{i=0}^{\infty} , we write

(\tau_{m}x)_{j}=\{
t_{j} for j<m ,
t_{m+j} for j\geq m ,

where m, j=0,1,2, . . (see [3], also [4], 7. 17). The sequence \tau_{m}x=

((\tau_{m}x)_{j})_{j=0}^{\infty} is called the m-translation of the sequence x .
1. 3. The sequential modulus of the sequence x=(t_{i})_{i=0}^{\infty} is defined as

\omega(x, r)=\sup_{m\geq r}\sup_{i}|(\tau_{m}x)_{i}-t_{i}| ,

where r=0,1,2 , \ldots Obviously, we have

\omega(x, r)=\sup_{m\geq r}\sup_{i\geq m}|t_{m+i}-t_{i}|


