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0. Introduction

Let \phi:G\cross M– M be a smooth action of a connected Lie group G on
a compact orientable manifold M. If for every point z of M the isotropy
subgroup G_{z} is discrete, \phi is said to be locally free. If the orbits of \phi have
codimension one, we call \phi a codimension one action. Suppose that G is
nilpotent and \phi is a locally free codimension one action. Some dynamical
properties of such an action \phi and topological properties of M are stated in
the paper [HGM]. We will consider this in detail. The object of this paper
is to prove the following

THEOREM. Let M be a connected closed orientable manifold. Suppose
that M admits a locally free codimension one smooth action \phi of a connected
nilpotent Lie group G such that i ) \phi has no compact orbits and ii ) the
dimension of the commutator [G, G] is one. Then M is homeomorphic to a
nilmanifold i. e. the homogeneous space of a connected nilpotent Lie group.

REMARK. (1) A compact nilmanifold always admits a locally free
codimension one smooth action of a connected nilpotent Lie group which
satisfies the above conditon i ). (2) A Heisenberg group is a good example
of a nilpotent Lie group which satisfies the above condition ii ).

The theorem is a finer version of theorem (2. 7) of [HGM] under the
assumption ii ).

Unless otherwise specified, we consider in the smooth (C^{\infty}) category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characteri-
zation of a compact minimal set of a unipotent flow on the space of lattices.
We describe it here.

Denote by \mathscr{L}(k) the space of lattices in k-dimensional euclidean space
E (cf. [C]). Fix a basis v_{1} , \cdots , v_{k} of E . Then every element b of a lattice
\Lambda has a expression b= \sum_{i}(\sum_{j}b_{ij}m_{j})v_{i} where m_{j}’s are integers and (b_{ij}) is


