Remarks on manifolds which admit locally free nilpotent Lie group actions

Yoichi Moriyama
(Received April 24, 1987, Revised September 24, 1987)

0. Introduction

Let $\phi: G \times M \longrightarrow M$ be a smooth action of a connected Lie group G on a compact orientable manifold M. If for every point z of M the isotropy subgroup G_{z} is discrete, ϕ is said to be locally free. If the orbits of ϕ have codimension one, we call ϕ a codimension one action. Suppose that G is nilpotent and ϕ is a locally free codimension one action. Some dynamical properties of such an action ϕ and topological properties of M are stated in the paper [HGM]. We will consider this in detail. The object of this paper is to prove the following

Theorem. Let M be a connected closed orientable manifold. Suppose that M admits a locally free codimension one smooth action ϕ of a connected nilpotent Lie group G such that i) ϕ has no compact orbits and ii) the dimension of the commutator $[G, G]$ is one. Then M is homeomorphic to a nilmanifold i. e. the homogeneous space of a connected nilpotent Lie group.

REmARK. (1) A compact nilmanifold always admits a locally free codimension one smooth action of a connected nilpotent Lie group which satisfies the above conditon i). (2) A Heisenberg group is a good example of a nilpotent Lie group which satisfies the above condition ii).

The theorem is a finer version of theorem (2.7) of [HGM] under the assumption ii).

Unless otherwise specified, we consider in the smooth $\left(C^{\infty}\right)$ category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characterization of a compact minimal set of a unipotent flow on the space of lattices. We describe it here.

Denote by $\mathscr{L}(k)$ the space of lattices in k-dimensional euclidean space \boldsymbol{E} (cf. [C]). Fix a basis $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}$ of \boldsymbol{E}. Then every element \boldsymbol{b} of a lattice Λ has a expression $\boldsymbol{b}=\sum_{i}\left(\sum_{j} b_{i j} m_{j}\right) \boldsymbol{v}_{i}$ where $m_{j}^{\prime} s$ are integers and $\left(b_{i j}\right)$ is

