Remarks on manifolds which admit locally free nilpotent Lie group actions

Yoichi MORIYAMA (Received April 24, 1987, Revised September 24, 1987)

0. Introduction

Let $\phi: G \times M \longrightarrow M$ be a smooth action of a connected Lie group G on a compact orientable manifold M. If for every point z of M the isotropy subgroup G_z is discrete, ϕ is said to be *locally free*. If the orbits of ϕ have codimension one, we call ϕ a *codimension one* action. Suppose that G is nilpotent and ϕ is a locally free codimension one action. Some dynamical properties of such an action ϕ and topological properties of M are stated in the paper [**HGM**]. We will consider this in detail. The object of this paper is to prove the following

THEOREM. Let M be a connected closed orientable manifold. Suppose that M admits a locally free codimension one smooth action ϕ of a connected nilpotent Lie group G such that $i \ \phi$ has no compact orbits and $ii \ the$ dimension of the commutator <math>[G, G] is one. Then M is homeomorphic to a nilmanifold *i*. *e*. the homogeneous space of a connected nilpotent Lie group.

REMARK. (1) A compact nilmanifold always admits a locally free codimension one smooth action of a connected nilpotent Lie group which satisfies the above conditon i). (2) A Heisenberg group is a good example of a nilpotent Lie group which satisfies the above condition ii).

The theorem is a finer version of theorem (2.7) of [HGM] under the assumption ii).

Unless otherwise specified, we consider in the smooth (C^{∞}) category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characterization of a compact minimal set of a unipotent flow on the space of lattices. We describe it here.

Denote by $\mathscr{L}(k)$ the space of lattices in k-dimensional euclidean space E (cf. [C]). Fix a basis v_1, \dots, v_k of E. Then every element b of a lattice Λ has a expression $b = \sum_i (\sum_j b_{ij} m_j) v_i$ where m_j 's are integers and (b_{ij}) is