On differential invariants of integrable finite type linear differential equations

Yutaka SE-ASHi
(Received February 2, 1987, Revised February 2, 1988)

§ 0. Introduction

The behavior of coefficients $a_{1}(t), a_{2}(t), \ldots, a_{n}(t)$ of a linear ordinary differential equation

$$
\mathscr{R}:\left(\frac{d}{d t}\right)^{n} u+a_{1}(t)\left(\frac{d}{d t}\right)^{n-1} u+a_{2}(t)\left(\frac{d}{d t}\right)^{n-2} u+\ldots+a_{n}(t) u=0
$$

under a change of variables $\bar{t}=\phi(t), \bar{u}=\lambda(t) u$ satisfying $\phi^{\prime}(t) \neq 0$ and $\lambda(t)$ $\neq 0$, was studied by Laguerre, Forsyth and others in the latter half of the 19 th century. Their fundamental results may be summarized as follows (cf. [5]):
i) There exists a change of variables which transforms \mathscr{R} into a form $a_{1}(t)=a_{2}(t)=0$. (Such a form is called a Laguerre-Forsyth's canonical form of \mathscr{R}.)
ii) If a change of variables $(t, u) \longrightarrow(\bar{t}, \bar{u})$ transforms a canonical form into a canonical form, then there exists constants a, b, c, d and e such that

$$
\phi(t)=\frac{a t+b}{c t+d}, \quad \lambda(t)=\frac{e}{(c t+d)^{n-1}} .
$$

iii) For each canonical form of \mathscr{R}, let $\theta_{p}(t)(d t)^{p}, p=3, \ldots, n$ be the tensor fields defined respectively by

$$
\begin{aligned}
\theta_{p}(t)= & \frac{(p-2)!p!}{(2 p-3)!n!} \\
& \times\left\{\sum_{j=0}^{p-3}(-1)^{j} \frac{(2 p-j-2)!(n-p+j)!}{(p-j-1)!j!}\left(\frac{d}{d t}\right)^{j} a_{p-j}(t)\right\} .
\end{aligned}
$$

Then the definition of $\theta_{p}(t)(d t)^{p}$ does not depend on the choice of the Laguerre-Forsyth's canonical form of \mathscr{R}. Moreover $\theta_{p}(t)(d t)^{p} p=3, \ldots, n$ form a fundamental system of invariants of \mathscr{R}.

The first purpose of this paper is to reformulate the classical LaguerreForsyth's theory of differential invariants of linear ordinary differential equations, by applying the E. Cartan's method. More precisely, we con-

