Operator Δ **-aK** on surfaces

Shigeo KAWAI (Received April 9, 1986)

§1. Introduction

Let M be an oriented 2-dimensional complete non-compact Riemannian manifold. Let denote by $\Delta = \text{trace } \nabla \nabla$ and K the laplacian and the Gauss curvature respectively. In this note, we assume that K does not vanish identically, and consider the operator $\Delta - aK$ acting on compactly supported function on M where a is a positive constant.

D. Fischer-Colbrie and R. Schoen [2] noted that the existence of a positive function f on M satisfying $\Delta f - qf = 0$ is equivalent to the condition that the first eigenvalue of $\Delta - q$ be positive on each bounded domain in M where q is a function on M. This fact has many interesting applications to stable minimal immersions and some sort of surfaces of constant mean curvature.

They also showed the following fact : For every complete metric on the disc, there exists a number a_0 depending on the metric satisfying $0 \le a_0 < 1$ so that for $a \le a_0$ there is a positive solution of $\Delta - aK$, and for $a > a_0$ there is no positive solution ([2] COROLLARY 2). They remarked that the value a_0 is 1/4 for the Poincaré metric on the disc and that possible values of a_0 are not known for metrics of variable curvature.

Though not stated explicitly, it was proved in M. do CARMO and C. K. PENG [1] that $a_0 \leq 1/2$ for every complete metric on the disc. A. V. POGOR-ELOV [4] proved the same result under the assumption $K \leq 0$. He did not state this explicitly either.

We show in this note that $a_0 \leq 1/4$ for metrics of non-positive curvature.

THEOREM. Let M be an oriented 2-dimensional complete non-compact Riemannian manifold of non-positive curvature $K \equiv 0$. Suppose that a is greater than 1/4. Then there is no positive solution of $\Delta - aK$, i. e., there exists a function f with compact support which satisfies the inequality

$$\int_{M} (|df|^2 + aKf^2) * 1 < 0.$$

We use the method of A. V. Pogorelov and choose a slightly different function f from that of [4].