Operator $\Delta-a K$ on surfaces

Shigeo Kawai
(Received April 9, 1986)

§ 1. Introduction

Let M be an oriented 2-dimensional complete non-compact Riemannian manifold. Let denote by $\Delta=\operatorname{trace} \nabla \nabla$ and K the laplacian and the Gauss curvature respectively. In this note, we assume that K does not vanish identically, and consider the operator $\Delta-a K$ acting on compactly supported function on M where a is a positive constant.
D. Fischer-Colbrie and R. Schoen [2] noted that the existence of a positive function f on M satisfying $\Delta f-q f=0$ is equivalent to the condition that the first eigenvalue of $\Delta-q$ be positive on each bounded domain in M where q is a function on M. This fact has many interesting applications to stable minimal immersions and some sort of surfaces of constant mean curvature.

They also showed the following fact: For every complete metric on the disc, there exists a number a_{0} depending on the metric satisfying $0 \leqq a_{0}<1$ so that for $a \leqq a_{0}$ there is a positive solution of $\Delta-a K$, and for $a>a_{0}$ there is no positive solution ([2] Corollary 2). They remarked that the value a_{0} is $1 / 4$ for the Poincare metric on the disc and that possible values of a_{0} are not known for metrics of variable curvature.

Though not stated explicitly, it was proved in M. do Carmo and C. K. Peng [1] that $a_{0} \leqq 1 / 2$ for every complete metric on the disc. A. V. Pogor. elov [4] proved the same result under the assumption $K \leqq 0$. He did not state this explicitly either.

We show in this note that $a_{0} \leqq 1 / 4$ for metrics of non-positive curvature.
Theorem. Let M be an oriented 2 -dimensional complete non-compact Riemannian manifold of non-positive curvature $K \equiv 0$. Suppose that a is greater than $1 / 4$. Then there is no positive solution of $\Delta-a K$, i.e., there exists a function f with compact support which satisfies the inequality

$$
\int_{M}\left(|d f|^{2}+a K f^{2}\right) * 1<0
$$

We use the method of A. V. Pogorelov and choose a slightly different function f from that of [4].

