On positive solutions of quasi-linear elliptic equations

J. CHABROWSKI (Received May 6, 1987)

ABSTRACT. In this note we prove the existence of positive solutions of the Dirichlet problem for a quasi-linear elliptic equation. Our boundary data belongs to L^2 and a corresponding solution is in a weighted Sobolev space.

1. Introduction.

Let $Q \subset R_n$ be a bounded domain with the boundary ∂Q of class C^2 . In Q we consider the Dirichlet problem

(1) $Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x, u)D_ju) + a_0(x)u = f(x, u)$ in Q,

(2)
$$u(x) = \phi(x)$$
 on ∂Q ,

where ϕ is a non-negative function in $L^2(\partial Q)$.

Throughout this paper we make the following assumptions

(A) There is a positive constant γ such that

$$\gamma^{-1}|\boldsymbol{\xi}|^2 \leq \sum_{i,j=1}^n a_{ij}(x, u) \ \boldsymbol{\xi}_i \boldsymbol{\xi}_j \leq \gamma |\boldsymbol{\xi}|^2$$

for all $\xi \in R_n$ and $(x, u) \in Q \times R$; $a_{ij}(x, u) = a_{ji}(x, u)$ (i, j=1, ..., n) for all $(x, u) \in Q \times R$. Moreover, we assume that $a_{ij}(\bullet, \bullet) \in C(\bar{Q} \times R)$ (i, j=1, ..., n) and for each $u \in R$, $a_{ij}(\bullet, u) \in C^1(\bar{Q})$ (i, j=1, ..., n) and that there exist functions $A_{ij} \in C^1(\bar{Q})$ such that

$$\lim_{|u| \to \infty} a_{ij}(x, u) = A_{ij}(x) \text{ and } \lim_{|u| \to \infty} D_x a_{ij}(x, u) = D_x A_{ij}(x) \quad (i, j = 1, ..., n)$$

n)

uniformly on \overline{Q} . Finally, the coefficient $a_0(x)$ is non-negative and belongs to $L^{\infty}(Q)$.

(B) The nonlinearity $f: Q \times R \rightarrow R$ satisfies the Carathéodory conditions, i. e.

(i) for each $u \in R$, the function $x \rightarrow f(x, u)$ is measurable in Q,

(ii) for each $x \in Q(a. e.)$, the function $u \rightarrow f(x, u)$ is continuous on R. Further assumptions on f will be formulated later on.

In this note we use the notion of a generalized (weak) solution of (1) involving the Sobolev spaces $W_{\text{loc}}^{1,2}(Q)$, $W^{1,2}(Q)$ and $\mathring{W}^{1,2}(Q)$ (for the