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Abstract

Let .# be a semifinite von Neumann algebra on a separable Hilbert space
with a faithful normal semifinite trace 7 on .#. Between r-measurable
operators, the condition of unitary mixing and other similar ones are char-
acterized in terms of the spectral relations such as the (sub)majorization.
Among other things, it is proved that, for positive x and y in L'(#; 1), x is
in the |-|;-closed convex hull of the unitary orbit of y if and only if the
majorization ex< ey holds for every central projection e.

Introduction

As a noncommutative measure space, let (#, ) be a pair of a
semifinite von Neumann algebra _# and a faithful normal semifinite trace =
on_#. The noncommutative integration theory (in the semifinite case) was
initiated by Segal [27] and Dixmier [10] (also [24]), and the noncom-
mutative probability theory was developed by Umegaki [32]. The concept
of 7-measurable operators was introduced by Nelson [22]. The space.# of
r-measurable operators affiliated with .# gives a nice foundation for the
noncommutative L?-spaces L?(.#; 7). The notion of generalized s-numbers
of z-measurable operators extends the usual s-numbers of compact operators
and the decreasing rearrangements of measurable functions. This notion
has been studied in some contexts by several authors (see [12, 14, 25, 28, 33]
for instance). Recently Fack and Kosaki [13] established an extensive and
unified exposition on generalized s-numbers of z-measurable operators.

Between positive selfadjoint ¥ and v in .#, the spectral relations of
majorization x <y, submajorization x<y, spectral dominance x <y and spec-
tral equivalence x =y are defined by means of the generalized s-numbers of x
and y. The precise definitions of these will be given in §1 of this paper.
The notions of majorization and submajorization have been extensively
studied in theory of matrices (see Marshall and Olkin [21] and Ando [3]).
We discussed in [15] those spectral relations in connection with doubly
(sub)stochasic maps on .#. Furthermore, when .# is a factor, we char-



