Representations of chordal subalgebras of von Neumann algebras

Paul S. MUHLY¹⁾ and Baruch SOLEL (Received October 7, 1988, Revised February 21, 1989)

§ 1. Introduction

Let M be a von Neumann algebra and $\mathfrak F$ a σ -weakly closed subalgebra of M containing the identity of M. A σ -weakly continuous, contractive representation of $\mathfrak F$ is a homomorphism ρ of $\mathfrak F$ into the algebra of bounded linear operators B(H) on a Hilbert space H such that $\rho(1)=I$ and $\|\rho(t)\| \leq \|t\|$ for all $t \in \mathfrak F$. Thus as an operator from $\mathfrak F$ to B(H), $\|\rho\|=1$. In recent years the following question has attracted considerable interest: Given such a representation ρ of $\mathfrak F$, when is it possible to find a triple (π, V, K) where π is a (normal) *-representation of M on the Hilbert space K and V is an isometry mapping H into K such that

$$\rho(t) = V^*\pi(t) V$$

for all $t \in \mathfrak{J}$? Such a triple, should it exist, is called a W*-dilation, or simply a dilation, for ρ . It was Arveson [A] who found the fundamental criterion for deciding if ρ has a dilation. To state it, let $\mathfrak{J} \otimes M_n$ be viewed as the $n \times n$ matrices over \Im endowed with the norm inherited from $M \otimes M_n$ and let ρ_n be the obvious extension of ρ to $\Im \otimes M_n$, mapping into $B(H) \otimes M_n = B$ $(H \otimes C^n)$. Then ρ is called *completely contractive* if and only if $\|\rho_n\|=1$ for all n. Arveson's dilation theorem asserts that ρ has a dilation if and only if ρ is completely contractive. In a recent paper [PPS], Paulsen, Power and Smith showed that if \Im is a subalgebra of M_n that is linearly spanned by the matrix units it contains and if the support of \Im , which is the set of (i, j) such that matrix unit e_{ij} lies in \Im , satisfies a certain graph-theoretic property which they call "chordal", then every contractive representation of 3 is completely contractive and so admits a dilation. Our objective in this note is to generalize this notion of "chordal" to the context of von Neumann algebras and to show that if \Im is a chordal, triangular subalgebra of M in a sense to be defined in a minute, and if M is hyperfinite, then every σ -weakly contractive representation of \Im is completely contractive.

¹⁾ Supported in part by a grant from the National Science Foundation.