Note on separable extensions of noncommutative rings

Kozo Sugano
(Received March 29, 1988)

Introduction.

This paper is a continuation of the author's previous paper [3]. Let A be a ring and B a subring of A such that $A=B \oplus M$ as B - B-module, and assume that A is a separable extension of B. In [3] the author considered two cases of separable extensions of this type, that is, the case where $M^{2} \subset$ B and the case where $M^{2} \subset M$, and investigated the former case mainly. In this paper we will treat the latter case, and will show that, in the case where $A=B \oplus M$ such that M in an ideal of A and left B-faithful, A is a separable extension of B, if and only if M is generated by a central idempotent f of A and a separable extension of $B f$ (Theorem 1). In the process of the proof of this theorem we will consider the case where $A=R \oplus S$ with S a ring and R a subring of S, and the multiplication is defined by $(r, x)(s, y)=(r s, x s+r y$ $+x y$) for any $x, y \in S$ and $r, s \in R$. And we will show the equivalence of the following three conditions:
(a) A is a separable extension of R
(b) A is a separable extension of $R \oplus R$
(c) S is a separable extension of R (Theorem 2).

1. Throughout this paper every ring will have the identity, and all subrings of a ring will contain the identity of the ring. As for the definition and the fundamental properties of the separable extension of a noncommutative ring, see [2]. The author requires the readers to have already known them. In particular, we will use freely Propositions 2.4 and 2.5 [2]. Moreover we require the following fact: If A_{i} is a separable extension of B_{i} for $r=1,2$, then $A=A_{1} \oplus A_{2}$ is a separable extension of $B=B_{1} \oplus B_{2}$. This is obvious by $A \otimes_{B} A=A_{1} \otimes_{B_{1}} A_{1} \oplus A_{2} \otimes_{B_{2}} A_{2}$.

The following lemma has been shown in [3] and [4].
Lemma 1. Let A be a ring and B a subring of A such that $A=B \oplus M$ as B-B-module with $M^{2} \subset M$. If A is a separable extension of B, then M is generated by a central idempotent of A. Consequently, M is a ring with the identity.

