A Bochner type theorem for compact groups*)

Toma TONEV (Received July 9, 1987, Revised June 15, 1988)

Introduction

Let G be a compact abelian group and Γ_0 be a fixed subsemigroup of the dual group $\Gamma = \hat{G}$ of G. It is well known that in the case when G is the unit circle S^1 and $\Gamma_0 = \mathbb{Z}_+$ any complex Borel measure $d\mu$ on G with zero nonpositive Fourier-Stieltjes coefficients $c_{-n} = \int_0^{2\pi} e^{int} d\mu(t)$, $n \in \mathbb{Z}_+$, is absolutely continuous with respect to the Haar (i. e. Lebesgue) measure $d\sigma$ on $G = S^1$. This is exactly the famous F. and F. And F is theorem for analytic measures on the unit circle (e. g. [1]). In the sequel we shall use the following

DEFINITION 1. A pair (G, K) of a compact abelian group G and a subset K of its dual group $\Gamma = \hat{G}$ is said to be a Riesz pair if every finite Borel measure $d\mu$ orthogonal to K (i. e. $\int_{G} \chi(x) d\mu(x) = 0$ for any $\chi \in K$) is absolutely continuous with respect to the Haar measure $d\sigma$ on G.

The F. and M. Riesz theorem says that (S^1, \mathbf{Z}_+) is a Riesz pair. As shown by S. Koshi and H. Yamaguchi [3] in the case when $\Gamma_0 \cup \Gamma_0^{-1} = \Gamma$ and $\Gamma_0 \cap \Gamma_0^{-1} = \{1\}$ an analogue of F. and M. Riesz theorem for analytic measures on a compact connected group G does not hold unless $G = S^1$ and $\Gamma_0 = \mathbf{Z}_+$ (or \mathbf{Z}_-). A theorem by I. Glicksberg [2] says that (S^1, Γ_0) is a Riesz pair for any subsemigroup Γ_0 of \mathbf{Z} , such that $\Gamma_0 - \Gamma_0 = \mathbf{Z}$. Consequently any finite complex Borel measure on S^1 that is orthogonal to such $\Gamma_0 \subset \mathbf{Z}$ and is singular with respect to the Haar measure on S^1 coincides with the zero measure on S^1 . On the other hand according to Bochner's theorem (e. g. [1]) (T^2, K) is a Riesz pair, where T^2 is the two dimensional torus and K is the complement in $\mathbf{Z}^2 = \hat{\mathbf{T}}^2$ of a plane angle less then 2π edged at the origin. Here we extend Glicksberg's theorem and give a general construction of Riesz pairs that generalizes the Bochner's one.

1. Low-complete subsets of partially ordered sets

Let G be a compact abelian group. If Γ_0 is a subsemigroup of its dual

^{*)} Partially supported by Committee for Science, Bulgaria, under contract No. 386.