Structure and commutativity of rings with constraints involving a commutative subset

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Hiroaki Komatsu, Hisao Tominaga and Adil Yaqub
(Received November 27, 1987, Revised January 26, 1988)

Throughout, R will represent a ring with center C, N the set of nilpotent elements in R, N^{*} the subset of N consisting of all x with $x^{2}=0$. Given a positive integer n, we set $E_{n}=\left\{x \in R \mid x^{n}=x\right\}$; in particular, $E=E_{2}$. For $x, y \in R$, define extended commutators $[x, y]_{k}$ as follows:let $[x, y]_{1}$ be the usual commutator $[x, y]=x y-y x$, and proceed inductively $[x, y]_{k}=$ $\left[[x, y]_{k-1}, y\right]$.

A ring R is called nearly commutative if R has no factorsubrings isomorphic to $M_{\sigma}(K)=\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ 0 & \sigma(\alpha)\end{array}\right) \right\rvert\, \alpha, \beta \in K\right\}$, where K is a finite field and σ is a non-trivial automorphism of K. Needless to say, every commutative ring is nearly commutative; every subring and every homomorphic image of a nearly commutative ring are nearly commutative. Following [2], R is called s-unital if for each x in $R, x \in R x \cap x R$. As stated in [2], if R is an s-unital ring then for any finite subset F of R there exists an element e in R such that $e x=x e=x$ for all $x \in F$. Such an element e will be called a pseudo-identity of F.

Now, let A be a non-empty subset of R, and l a positive integer. We consider the following conditions:
($I^{\prime}-A$) For each $x \in R$, either $x \in C$ or there exists a polynomial $f(t)$ in $\boldsymbol{Z}[t]$ such that $x-x^{2} f(x) \in A$.
(II' $-A$) If $x, y \in R$ and $x-y \in A$, then either $x^{m}=y^{m}$ with some positive integer m or both x and y belong to the centralizer $C_{R}(A)$ of A in R.
(II- $A)_{l}$ If $x, y \in R$ and $x-y \in A$, then either $x^{l}=y^{l}$ or x and y both belong to $C_{R}(A)$.
(ii- $A)^{\prime} \quad$ For each $x \in R$ and $a \in A$, there exists a positive integer m, depending on x and a, such that $\left[a, x^{m}\right]=0$.
(ii-A) ${ }_{\iota}^{\prime} \quad\left[a, x^{\imath}\right]=0$ for all $x \in R$ and $a \in A$.
(ii- A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $\left[a, x^{m}\right]_{k}=0$.

