Structure and commutativity of rings with constraints involving a commutative subset

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Hiroaki KOMATSU, Hisao TOMINAGA and Adil YAQUB (Received November 27, 1987, Revised January 26, 1988)

Throughout, R will represent a ring with center C, N the set of nilpotent elements in R, N^* the subset of N consisting of all x with $x^2=0$. Given a positive integer n, we set $E_n = \{x \in R | x^n = x\}$; in particular, $E = E_2$. For $x, y \in R$, define extended commutators $[x, y]_k$ as follows: let $[x, y]_1$ be the usual commutator [x, y] = xy - yx, and proceed inductively $[x, y]_k = [[x, y]_{k-1}, y]$.

A ring *R* is called *nearly commutative* if *R* has no factorsubrings isomorphic to $M_{\sigma}(K) = \{ \begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix} | \alpha, \beta \in K \}$, where *K* is a finite field and σ is a non-trivial automorphism of *K*. Needless to say, every commutative ring is nearly commutative; every subring and every homomorphic image of a nearly commutative ring are nearly commutative. Following [2], *R* is called *s*-unital if for each *x* in *R*, $x \in Rx \cap xR$. As stated in [2], if *R* is an *s*-unital ring then for any finite subset *F* of *R* there exists an element *e* in *R* such that ex = xe = x for all $x \in F$. Such an element *e* will be called a *pseudo-identity* of *F*.

Now, let A be a non-empty subset of R, and l a positive integer. We consider the following conditions:

- (I'-A) For each $x \in R$, either $x \in C$ or there exists a polynomial f(t)in $\mathbf{Z}[t]$ such that $x - x^2 f(x) \in A$.
- (II'-A) If $x, y \in R$ and $x-y \in A$, then either $x^m = y^m$ with some positive integer m or both x and y belong to the centralizer $C_R(A)$ of A in R.
- (II-A)_l If $x, y \in R$ and $x-y \in A$, then either $x^{l}=y^{l}$ or x and y both belong to $C_{R}(A)$.
- (ii-A)' For each $x \in R$ and $a \in A$, there exists a positive integer *m*, depending on *x* and *a*, such that $[a, x^m] = 0$.
- $(\text{ii-}A)'_{l}$ [a, x^{l}]=0 for all $x \in R$ and $a \in A$.
- (ii-A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $[a, x^m]_k = 0$.