On Hardy's Inequality and Paley's Gap Theorem

Sadahiro SAEKI and Hiroshi YAMAGUCHI Dedicated to Professor Shozo Koshi on his sixtieth birthday (Received April 10, 1989)

Let $T = \{z \in C : |z| = 1\}$ be the circle group, and let λ be the Lebesgue measure on T normalized so that $\lambda(T) = 1$. Thus the Fourier coefficients of $f \in L^1(T)$ are defined by

$$\hat{f}(n) = \int_{T} z^{-n} f(z) d\lambda(z) \qquad \forall n \in \mathbb{Z}.$$

The Hardy class $H^1(\mathbf{T})$ consists of all $f \in L^1(\mathbf{T})$ such that $\hat{f}(n) = 0$ for all n < 0. The classical inequality of Hardy states that

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n} |\hat{f}(n)| \leq C_1 ||f||_1 \qquad \forall f \in H^1(\boldsymbol{T}),$$

where C_1 is a positive constant $\leq \pi$; see, e.g., K. Hoffman [2; p. 70] or A. Zygmund [5; p. 286]. On the other hand, Paley's Gap Theorem [3] asserts that given a sequence $(n_k)_1^{\infty}$ of natural numbers with inf $\{n_{k+1}/n_k: k \geq 1\}$)1, there exists a finite constant C_2 such that

(2)
$$\sum_{k=1}^{\infty} |\hat{f}(n_k)|^2 \le C_2^2 ||f||_1^2 \quad \forall f \in H^1(T).$$

For a generalization of (2) to connected compact abelian groups, we refer to W. Rudin [4; p. 213]. In the present paper, we shall give some generalizations of these well known results both in the classical setting and the abstract setting.

Let α be a Borel measurable function on T such that $|\alpha|=1$ almost everywhere. Given $f \in L^{1}(T)$, let $\alpha^{*}f$ denote the complex measure on Tdefined by

(3)
$$\int hd(\alpha^*f) = \int (h \circ \alpha) f d\lambda$$

for all bounded Borel functions h on T. In other words, $\alpha^* f$ is the image measure of $f\lambda$ by α . Let $H_0^1(T) = \{f \in H^1(T) : \hat{f}(0) = 0\}$. Finally recall that an inner function is an element α of $H^1(T)$ such that $|\alpha| = 1$ almost everywhere.

THEOREM 1. Let α , β be two functions in $H^1(\mathbf{T})$ such that $|\alpha|=1 \ge |\beta| a. e.$ and $\hat{\alpha}(0)\hat{\beta}(0)=0$. Then