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E. McMahon and A. C. Mewborn introduced a type of separable
extensions in [4], which is called strongly separable extension. In this
paper, we shall study some properties of strongly separable extensions
corresponding to H-separable extensions. In \S 1, we give some equivalent
conditions (1. 4) and in \S 2, we give the commutor theorem for strongly
separable extensions (2. 5).
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his advices during the preparation of this paper.

1. Strongly separable extensions

Let R be a ring and M and N left R-modules. We shall denote M\sim\rangle

N if M is a direct sum of submodules S and K such that RS<
\oplus_{R}(N\oplus\cdots\oplus N) and Hom(_{R}K_{ R},N)=0 . It is easy to see that K coincides
with the reject of N in M (cf. [1]), which is defined by

Rej_{M}(N)=\cap\{kerf;f\in Hom(_{R}M_{ R},N)\} .

Using this notation, we can state that a ring 11 is a strongly separable
extension of a subring \Gamma if and only if \Lambda\otimes_{\Gamma}\Lambda\sim\rangle \Lambda as \Lambda-\Lambda -medules.

LEMMA 1. 1. Let R be a ring and M and N left R modules such
that M\sim\rangle N. Then for every R-direct summand L_{1} of M, L_{1}\sim\rangle N.

PROOF. We can writ M=L_{1}\oplus L_{2} and M=S\oplus K with
RS<\oplus_{R}(N\oplus\cdots\oplus N) , Hom(_{R}K_{ R},N)=0 .

Let \pi_{1} and \pi_{2} be projections of M to L_{1} and L_{2} , respectively, and p_{K} the
projection M to K. By (8. 18) in [1], we have K=\pi_{1}(K)\oplus\pi_{2}(K) . Then
the restriction of \pi_{i}p_{K} to L_{i} is the projection of L_{i} to \pi_{i}(K)(_{i}=1,2) .
Hence we can write L_{1}=S_{1}\oplus\pi_{1}(K) and L_{2}=S_{2}\oplus\pi_{2}(K) . Then we have M
=S\oplus K=S_{1}\oplus S_{2}\oplus K and S\simeq M/K\simeq S_{1}\oplus S_{2} . Hence S_{1}<\oplus S<\oplus(N\oplus\cdots N) .
Since \pi_{1}(K)<\oplus K , Hom(_{R}\pi_{1}(K)_{ R},N)=0 . Then L_{1}\sim\rangle N.

Let \Gamma\subset B\subset\Lambda be rings. In case the map B\otimes_{\Gamma}\Lambdaarrow\Lambda such that
b\otimes\lambda-arrow b\lambda for b\in B and \lambda\in\Lambda splits as a B-\Lambda -map, we shall call briefly
that B\otimes_{\Gamma}\Lambdaarrow\Lambda splits. In this case, by tensoring on the left with \Lambda over
B, \Lambda\otimes_{B}\Lambda<\oplus\Lambda\otimes_{\Gamma}\Lambda as \Lambda-\Lambda -modules. So, from the above lemma, we


