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Introduction

In this paper we discuss some perturbation problems related to the
relative compactness and boundedness of closable operators in complex
Banach spaces which are not necessarily reflexive.

Let X, Y and Z be Banach spaces, let A be an operator from X into
Z and let B be an operator from X into Y with D(A)CD(B), where
D(T) denotes the domain of an operator 7. We consider the following
three conditions (see T. Kato [3] and S. G. Krein [4]):

(1) B is A-compact, i.e, for any sequence {#.} in D(A) with

i‘égq'”"“)f +1Aunl2) <% {Bu,} has a convergent subsequence {Bun} in Y.

(II) B is subordinate to A with exponent a0, 1), i.e., there is a
constant C, such that for all #D(A)

| Bully < Call Auel|Elaelli*.

(Il B is A-bounded with A-bound zero, i.e., for any & >0 there is a
constant Ce such that for all uD(A)

| Bully < el Autll 2+ Cellue] x.

It is clear that (II) implies (II). P. Hess [1][2] has proved that
(1) implies (ID) in the case X=Y =Z, where X is reflexive and A is
closed. He has also observed that both reflexivity of X and closedness of
A are necessary. M. Schechter [6] has proved that (I) implies (IID in
the case X =Y =Z, where X is not necessarily reflexive, A is closed, and
B is closable.

In § 1 we prove that exen when X, Y, Z are not reflexive and A is
not closed, (1) implies (III) under the condition that B is closable,
which is also shown not removable. Moreover, we prove that there exist
a Banach space X, a closed operator A and a non-closable operator B in
X satisfying (1) and (II). Furthermore, we prove that there exist a
Banach space X and closed operators A, B in X such that (II) does not
hold for any a €(0,1) but (I) holds. Let X=Y=Z=L?*R") and let



