Relative bounds of closable operators in non-reflexive Banach spaces

Hideo Kozono and Tohru Ozawa
(Received February 1, 1989, Revised February 21, 1989)

Introduction

In this paper we discuss some perturbation problems related to the relative compactness and boundedness of closable operators in complex Banach spaces which are not necessarily reflexive.

Let X, Y and Z be Banach spaces, let A be an operator from X into Z and let B be an operator from X into Y with $D(A) \subset D(B)$, where $D(T)$ denotes the domain of an operator T. We consider the following three conditions (see T. Kato [3] and S. G. Krein [4]) :
(I) B is A-compact, i. e., for any sequence $\left\{u_{n}\right\}$ in $D(A)$ with $\sup _{n \in N}\left(\left\|u_{n}\right\|_{X}+\left\|A u_{n}\right\|_{z}\right)<\infty,\left\{B u_{n}\right\}$ has a convergent subsequence $\left\{B u_{n_{j}}\right\}$ in Y.
(II) B is subordinate to A with exponent $\alpha \in(0,1)$, i. e., there is a constant C_{α} such that for all $u \in D(A)$

$$
\|B u\|_{Y} \leq C_{\alpha}\|A u\|_{Z}^{\alpha}\|u\|_{X}^{1-\alpha} .
$$

(III) B is A-bounded with A-bound zero, i. e., for any $\varepsilon>0$ there is a constant C_{ε} such that for all $u \in D(A)$

$$
\|B u\|_{Y} \leq \varepsilon\|A u\|_{z}+C_{\varepsilon}\|u\|_{X}
$$

It is clear that (II) implies (III). P. Hess [1][2] has proved that (I) implies (III) in the case $X=Y=Z$, where X is reflexive and A is closed. He has also observed that both reflexivity of X and closedness of A are necessary. M. Schechter [6] has proved that (I) implies (III) in the case $X=Y=Z$, where X is not necessarily reflexive, A is closed, and B is closable.

In § 1 we prove that exen when X, Y, Z are not reflexive and A is not closed, (I) implies (III) under the condition that B is closable, which is also shown not removable. Moreover, we prove that there exist a Banach space X, a closed operator A and a non-closable operator B in X satisfying (I) and (II). Furthermore, we prove that there exist a Banach space X and closed operators A, B in X such that (II) does not hold for any $\alpha \in(0,1)$ but (I) holds. Let $X=Y=Z=L^{2}\left(\boldsymbol{R}^{n}\right)$ and let

