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1. Introduction and preliminaries

Two pairs of functors play an outstanding role in the representation
theory of finite-dimensional tensor algebras: The Coxeter functors C^{+}

and C^{-} and the functors DTr and TrD, the importance of which has
been discovered by Auslander and Reiten (see [5] resp. [1]; as usual Tr
denotes the Auslander-Bridger transpose and D the duality with respect to
the ground field). Brenner and Butler [4] and, independently, Gabriel [6]
have proved the remarkable fact that there is an equivalence T of a very
simple form such that C^{+} and DTrT resp. C^{-} and TDTr are isomor-
phic. The validity of a result of this sort for the larger class of artinian
tensor rings with duality conditions has been conjectured by Auslander,
Platzeck and Reiten [2] when they noticed that these rings possess a
canonical selfduality D. In the present article this conjecture is confirmed.
Actually we intend to show that Gabriel’s proof can be adopted with cer-
tain modifications.

For the convenience of the reader we sum up some definitions and
simple facts concerning tensor rings with duality conditions and their mod-
ules. Since it is more suitable for our purpose we prefer the equivalent
language of modulations of quivers and their representations [5]. How-
ever, first let us agree upon some conventions. For modules M, N over
some ring S we shall write (M, N) instead of Hom_{S}(M, N) ; furthermore
we use the abbreviations M^{*}=(M_{S}, S_{S}) resp. *M=(_{S}M_{ S},S) for a right
resp. left S-module M. We shall place maps of left modules to the right
of the argument and maps of right or bimodules to the left; accordingly
the composition of maps is written. In the situation M_{S,S}N_{T} , P_{T} the
canonical isomorphism (M\otimes_{S}N_{T}, P_{T})arrow(M_{S}, (N_{T}, P_{T})_{S}) is denoted by
f-arrow\hat{f} .

In this paper we assume that \Gamma is a finite connected quiver without
cycles and multiple arrows. The set of vertices resp. arrows of \Gamma is
denoted by \Gamma_{0} resp. \Gamma_{1} and the domain resp. range of some arrow \alpha by
d\alpha resp. ra. Furthermore we assume that for each x\in\Gamma_{0} we have a


