Second order hyperbolic equations with time-dependent singularity or degeneracy

Taeko YAMAZAKI (Received September 29, 1988)

Introduction

Let *H* be a Hilbert space with norm $\|\cdot\|$, and let Λ be a non-negative self-adjoint operator in *H*. Let S_1 , S_2 , t_0 , α and ν be real numbers with $S_1 \leq 0 \leq S_2$, $S_1 \leq t_0 \leq S_2$, $\alpha' > -1$ and $-2\alpha - 1 < \nu < 1$. We are concerned with the well-posedness of the following singular or degenerate hyperbolic equation in *H*:

(0.1)
$$u''(t) + \phi^2(t)\Lambda u(t) + \psi(t)u'(t) + \Xi(t)u(t) = f(t)$$

(0.2) $u(t_0) = u_0, |t|^{\nu}u'(t)|_{t=t_0} = u_1,$ (WE)

where u' is the *t*-derivative in the sense of vector-valued derivative, ϕ and ψ are functions on $[S_1, S_2]$ to $[0, +\infty]$ satisfying the following;

 $(0.3) \qquad \phi(\bullet) \in W^{2,\infty}_{\text{loc}}((S_1, S_2) \setminus \{0\}),$

$$(0.4) \qquad C^{-1}|t|^{a} \leq \boldsymbol{\phi}(t) \leq C|t|^{a},$$

(0.5) $|\phi'(t)| \leq C |t|^{\alpha-1}, |\phi'(t)| \leq C |t|^{\alpha-2},$

for a. e. t on (S_1, S_2) , with some positive constant C,

(0.6)
$$\psi(t) - \nu/t \in L^1(S_1, S_2),$$

We note that ϕ takes value 0 or ∞ at t=0. That is, the singularity or the degeneracy of (0.1) occurs at t=0, which may be initial time $(t_0=0)$ or not $(t_0\neq 0)$. Especially if $2\alpha > -1$, we can take $\nu=0$. In [15], we showed the well-posednes of (WE) in the space $H=L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^n with smooth boundary, $\Lambda = -\Delta$ with homogeneous Dirichlet boundary condition, $2\alpha > -1$, $\nu=0$, $\phi(t)=t^{\alpha}$, $\psi=f=0$, $\Xi=0$. The purpose of this paper is to generalize the above theorem. For this purpose, we first prove an abstract theorem on the well-posedness of nonhomogeneous evolution equation, which generalizes the abstract theorem on that of homogeneous equation in [15] (see Theorem 2). Then we solve (WE) by applying this abstract theorem (see Theorem 1).

Equation (0.1) with $t_0=0$ is studied by various authors: see Carroll-