Algebras A_p and B_p and amenability of locally compact groups

Koji FURUTA (Received July 16, 1990)

0. Introduction.

Since the appearance of the pioneer work of Eymard [4], the Fourier algebra A(G) of a locally compact group G has been studied by many authors in connection with the theory of unitary representations and the theory of operator algebras. As related algebras, the algebras $A_p(G)$ and the algebras $B_p(G)$ of Herz-Schur multipliers for $1 have been investigated by Eymard [5] and Herz [8-10] together with the algebras <math>PF_p(G)$ of pseudofunctions and $PM_p(G)$ of pseudomeasures. Remark here that $A(G)=A_2(G)$. In general the algebra $A_p(G)$ is contractively imbedded in $B_p(G)$. When G is amenable, this imbedding is isometric.

It is shown in [8, 11] that if the group G is amenable, then $A_p(G)$ is contractively included in $A_p(G)$ whenever $1 or <math>2 \le p' . In particular, <math>A(G)$ is contractively included in every $A_p(G)$. It is known that the same relation holds also for $B_p(G)$ (see Remark 2.5 (1)). However, according to Pytlik [18], we know that when \mathbf{F}_r is a free group with r generators, $2 \le r \le \infty$, a typical example of non-amenable groups, for any distinct pair p, p' there does not exist any inclusion relation between $A_p(\mathbf{F}_r)$ and $A_p(\mathbf{F}_r)$ (see Remark 2.5 (2)). In section 2, we will prove that for every locally compact group G the algebra $B_2(G)$ is contractively included in $B_p(G)$. As a consequence, we show that when \mathbf{F}_r is a free group, for any $1 the algebra <math>A_p(\mathbf{F}_r)$ has an approximate identity $\{u_n\}$ such that $\sup_n \|u_n\|_{B_p} \le 1$. This result should be compared with the well-known result (e. g. [9], [15]) that $A_p(G)$ has a bounded approximate identity if and only if the group G is amenable.

Nebbia [16] characterized the amenability of G in terms of multipliers of A(G) into the space M(G) of finite complex Radon measures or $L^1(G)$. In section 3, for $1 and <math>1 \le p' < \infty$, we define multipliers of $A_p(G)$ into M(G) or $L^p(G)$, and those of $W_p(G)$ (the dual space of $PF_p(G)$) into M(G) or $L^p(G)$. For instance, a multiplier of $A_p(G)$ into M(G) is a bounded linear operator $\Phi: A_p(G) \to M(G)$ such that $\Phi(uv) = u\Phi(v)$ for all $u, v \in A_p(G)$. Any element of M(G) defines a multiplier in natural