A unit group in a character ring of an alternating group

Dedicated to Professor Kazuhiko Hirata on his 60th birthday

Kenichi YAMAUCHI (Received June 4, 1990)

1. Introduction

Throughout this paper, G denotes always a finite group, Z a ring of rational integers, Q a rational field and C a complex field. Let $\{x_1(a \text{ principal character}), \dots, x_h\}$ be the set of all irreducible C-characters of G. We denote this set by Irr(G). Let us set

$$R(G) = \{\sum_{i=1}^{h} a_i x_i | a_i \in Z\}$$

That is, R(G) is the set of generalized characters of G. It is well known that R(G) forms a commutative ring with an identity element x_1 . We call R(G) a character ring of G.

Let ζ be a primitive |G|-th root of unity and let $K = Q(\zeta)$ be the smallest subfield of C containing Q and ζ . We denote by A the ring of algebraic integers in K. In the paper of [9], we have proved the following theorem and corollary.

THEOREM 1.1. Any unit of finite order in $A \otimes_z R(G)$ has the form $\varepsilon \chi$ for some linear character χ of G and some unit ε in A.

COROLLARY 1.2. Any unit of finite order in R(G) has the form $\pm \chi$ for some linear character χ of G.

We denote by U(R(G)) a unit group of R(G). In section 2, we shall prove that U(R(G)) is finitely generated. Hence a factor group $U(R(G))/U_f(R(G))$ is a free abelian group of finite rank, where $U_f(R(G))$ is the group which consists of units of finite order in R(G)).

In this paper, we intend to compute the rank of $U(R(A_n))/U_f(R(A_n))$, where A_n is an alternating group on n symbols.

2. Preliminaries

We first show that U(R(G)) is finitely generated.

THEOREM 2.1. For a finite group G, U(R(G)) is finitely generated.