Transversely piecewise linear foliation by planes and cylinders; PL version of a theorem of E. Ghys

Hiroyuki MINAKAWA (Received May 8, 1990)

§ 0. Introduction

Let Σ be a closed oriented surface of genus ≥ 2 and $p: E \rightarrow \Sigma$ a oriented S^1 -bundle over Σ . Then there exists the cohomology class $e(E) \in H^2(\Sigma, \mathbb{Z})$ which is known as the Euler class. We define the Eular number $eu(E) \in \mathbb{Z}$ by the formula

$$eu(E) = \langle e(E), [\Sigma] \rangle.$$

Here $[\Sigma] \in H_2(\Sigma, \mathbb{Z})$ denotes the fundamental class of Σ .

The S¹-bundle E has a codimension-one foliation \mathscr{F} transverse to each fiber of it if and only if it satisfies the inequality

$$|eu(E)| \leq |\chi(\Sigma)|$$

where $\chi(\Sigma)$ denotes the Euler characteristic of Σ (see [Mil], [Wo]).

Recently E. Ghys found the influence of the qualitative properties of \mathscr{F} on the Euler number eu(E) of E in his paper [Gh]. In order to see this, we will explain the minimal set of \mathscr{F} , and the classification of it first.

Let M be a closed manifold and \mathscr{G} a codimension-one foliation of M. A subset S of M is *saturated* if it is a union of leaves of \mathscr{G} . Non-empty, closed, saturated subset \mathscr{M} of M is called *minimal* if it is minimal about these properties. Since M is compact, there exists a minimal set \mathscr{M} of M. Any minimal set \mathscr{M} is one of the following three types:

- (1) a closed leaf,
- (2) M (in this case, the foliation \mathscr{G} is called *minimal*),
- (3) an exceptional minimal set (that is, for any point $x \in \mathcal{M}$, there exists a compact arc T through x in M such that $\mathcal{M} \cap T$ is a Cantor set).

Now let E, \mathcal{F}, Σ be as above. As is well known, if \mathcal{F} has a closed leaf, then eu(E)=0. And for any integer n with $|n| \leq |\chi(\Sigma)|$, there exists a transversely projective foliated S^1 -bundle (E_n, \mathcal{F}_n) over Σ such that $eu(E_n)=n$. The result of E. Ghys ([Gh]) mentioned above is as fol-