Transversely piecewise linear foliation by planes and cylinders ; PL version of a theorem of E. Ghys

Hiroyuki Minakawa
(Received May 8, 1990)

§ 0. Introduction

Let Σ be a closed oriented surface of genus ≥ 2 and $p: E \rightarrow \Sigma$ a oriented S^{1}-bundle over Σ. Then there exists the cohomology class $e(E) \in$ $H^{2}(\Sigma, \boldsymbol{Z})$ which is known as the Euler class. We define the Eular number $e u(E) \in \boldsymbol{Z}$ by the formula

$$
e u(E)=\langle e(\mathrm{E}),[\Sigma]\rangle .
$$

Here $[\boldsymbol{\Sigma}] \in H_{2}(\boldsymbol{\Sigma}, \boldsymbol{Z})$ denotes the fundamental class of $\boldsymbol{\Sigma}$.
The S^{1}-bundle E has a codimension-one foliation \mathscr{F} transverse to each fiber of it if and only if it satisfies the inequality

$$
|e u(E)| \leq|\chi(\Sigma)|,
$$

where $\chi(\Sigma)$ denotes the Euler characteristic of $\boldsymbol{\Sigma}$ (see [Mil], [Wo]).
Recently E. Ghys found the influence of the qualitative properties of \mathscr{F} on the Euler number $e u(E)$ of E in his paper [Gh]. In order to see this, we will explain the minimal set of \mathscr{F}, and the classification of it first.

Let M be a closed manifold and \mathscr{G} a codimension-one foliation of M. A subset S of M is saturated if it is a union of leaves of \mathscr{G}. Non-empty, closed, saturated subset \mathscr{M} of M is called minimal if it is minimal about these properties. Since M is compact, there exists a minimal set \mathscr{M} of M. Any minimal set \mathscr{M} is one of the following three types:
(1) a closed leaf,
(2) M (in this case, the foliation \mathscr{G} is called minimal),
(3) an exceptional minimal set (that is, for any point $x \in \mathscr{M}$, there exists a compact arc T through x in M such that $\mathscr{M} \cap T$ is a Cantor set).
Now let E, \mathscr{F}, Σ be as above . As is well known, if \mathscr{F} has a closed leaf, then $e u(E)=0$. And for any integer n with $|n| \leq|\chi(\Sigma)|$, there exists a transversely projective foliated S^{1}-bundle (E_{n}, \mathscr{F}_{n}) over Σ such that $e u\left(E_{n}\right)=n$. The result of E . Ghys ([Gh]) mentioned above is as fol-

