On groups G of p-length 2 whose nilpotency indices of $J(K G)$ are $a(p-1)+1$

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Hiroshi Fukushima
(Received April 9, 1990)

1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup P of order p^{a}, K a field of characteristic $p, K G$ the group algebra of G over K, and $t(G)$ the nilpotency index of the radical $J(K G)$ of $K G$.
D. A. R. Wallace [9] proved that $a(p-1)+1 \leqq t(G) \leqq p^{a}$. Y. Tsushima [8] proved that the second equality $t(G)=p^{a}$ holds if and only if P is cyclic. Here we shall study the structure of G with $t(G)=a(p-1)+1$. If G has p-length 1 , then $t(G)=t(P)$ by Clarke [1]. From this, we can easily see that $t(G)=a(p-1)+1$ if and only if P is elementary abelian. Therefore we shall be interested in the structure of G of p-length 2 with $t(G)=a(p-1)+1$. As such examples, we know the followings.

We set $q=p^{r}$ and $l=\left(q^{p}-1\right) /(q-1)$. Then $q-1$ and l are relatively prime. Let $F=G F\left(q^{p}\right)$ be a finite field of q^{p} elements, λ a generator of the multiplicative group F^{*} of F, and $\nu=\lambda^{q-1}$. Let V be the additive group of F. If we define $v^{x}=\nu v$, where νv means a multiplication in the field F, then $x \in \operatorname{Aut}(V)$. Let U be the Galois group of F over $G F(q)$, and $H=\langle x\rangle$. Then $H U \cong \operatorname{Aut}(V)$. So we can consider the semidirect product of V by $H U$. We set $M_{p, r}=V H U$. Then $H U$ is a Frobenius group and $|H|=l,|U|=p$, and $V U$ is a Sylow p-subgroup of $M_{p, r}$ of order $p^{p r+1}$. In [5], Motose proved $t\left(M_{p, r}\right)=(p r+1)(p-1)+1$.

Let $G=M_{p, r}$, then $G=O_{p, p ; p}(G)$ and $G / O_{p}(G)$ is a Frobenius group. So can we consider conversely that if G satisfies such conditions and $t(G)=a(p-1)+1$, then is G isomorphic to $M_{p, r}$? Concerning this problem, we have the following result.

Theorem. Let V be a normal p-subgroup of G with $G=V N$ and $V \cap N=1$ for some Frobenius group N with complement U and kernel H, where U and H are p-group and abelian p^{\prime}-group, respectively. Then the

