On groups G of p-length 2 whose nilpotency indices of J(KG) are a(p-1)+1

Dedicated to Professor Tosiro TSUZUKU on his 60th birthday

Hiroshi Fukushima (Received April 9, 1990)

1. Introduction

Let G be a finite p-solvable group with a Sylow p-subgroup P of order p^a , K a field of characteristic p, KG the group algebra of G over K, and t(G) the nilpotency index of the radical J(KG) of KG.

D. A. R. Wallace [9] proved that $a(p-1)+1 \le t(G) \le p^a$. Y. Tsushima [8] proved that the second equality $t(G)=p^a$ holds if and only if P is cyclic. Here we shall study the structure of G with t(G)=a(p-1)+1. If G has p-length 1, then t(G)=t(P) by Clarke [1]. From this, we can easily see that t(G)=a(p-1)+1 if and only if P is elementary abelian. Therefore we shall be interested in the structure of G of p-length 2 with t(G)=a(p-1)+1. As such examples, we know the followings.

We set $q=p^r$ and $l=(q^p-1)/(q-1)$. Then q-1 and l are relatively prime. Let $F=GF(q^p)$ be a finite field of q^p elements, λ a generator of the multiplicative group F^* of F, and $\nu=\lambda^{q-1}$. Let V be the additive group of F. If we define $v^x=\nu v$, where νv means a multiplication in the field F, then $x\in \operatorname{Aut}(V)$. Let U be the Galois group of F over GF(q), and $H=\langle x\rangle$. Then $HU\subseteq \operatorname{Aut}(V)$. So we can consider the semidirect product of V by HU. We set $M_{p,r}=VHU$. Then HU is a Frobenius group and |H|=l, |U|=p, and VU is a Sylow p-subgroup of $M_{p,r}$ of order p^{pr+1} . In [5], Motose proved $t(M_{p,r})=(pr+1)(p-1)+1$.

Let $G = M_{p,r}$, then $G = O_{p,p,p}(G)$ and $G/O_p(G)$ is a Frobenius group. So can we consider conversely that if G satisfies such conditions and t(G) = a(p-1)+1, then is G isomorphic to $M_{p,r}$? Concerning this problem, we have the following result.

THEOREM. Let V be a normal p-subgroup of G with G = VN and $V \cap N = 1$ for some Frobenius group N with complement U and kernel H, where U and H are p-group and abelian p'-group, respectively. Then the