
Hokkaido Mathematical Journal Vol. 20 (1991) p. 519-521

A note on the Lonergan-Hosack presentation
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Introduction.

The problem of finding different methods to prove groups finite or
infinite was discussed by M. Newman in a lecture which he gave at the
GROUPS-KOREA 1988 conference in Pusan. As an example he consid-
ered the Lonergan-Hosack presentation

G(m)=\langle x, z:z^{3}x^{m-4}z^{3}x^{-1}=z^{5}x^{m-3}z^{2}x^{m-3}=1\rangle .

For the two cases m=1 and m=5 we have fundamental group presen-
tations of closed, orientable 3-dimensional manifolds. For a while it was
an open problem whether these presentations are those of finite or infinite
groups. The first solution came from M. Slattery [4] who managed to
show that G(1) and G(5) are infinite by using the computer algebra pack-
age CAYLEY. In his conference talk M. Newman welcomed all contribu-
tions to this area and the purpose of this note is to show that the use of
some supporting theory provides us with more information about the struc-
ture of G(m) .

Results.

Consider the presentation G(m) given in the introduction.

THEOREM 1. Let m\geq 5 or m=3 or m<0 . Then
(1) G(m) has a subgroup of finite index mapping onto a free group

of rank 2 and G(m) has a free subgroup of rank 2.
(2) G(m) has a generating pair \{u, v\} such that the subgroup generated

ed by elements u^{k} and v^{h} is free of rank 2 for a sufficiently large
integer k.

(3) G(m) is SQ-universal.

PROOF: If m=5, then the result follows directly from [3]. If m=3,
then G(3)\cong Z_{2}\star Z_{7} and the result is well known (see [2]). Then assume
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