Existence results for singular elliptic equations

J. CHABROWSKI (Received January 16, 1990, Revised June 15, 1990)

The purpose of this paper is to study the existence of positive solutions in \mathbf{R}_n of the singular elliptic equation

(1)
$$Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x)D_ju) + c(x)u = g(x, u),$$

where the nonlinearity g is defined on $\mathbf{R}_n \times (0, \infty)$. Solutions of (1), which are defined on \mathbf{R}_n , are called entire solutions. The precise conditions on g, to be formulated later, show that equation (1) is a natural extension of the following equation

(1')
$$-\Delta u = f(x) u^{-\gamma}$$
 in \mathbf{R}_n ,

where $\gamma > 0$ is a constant. The equation (1') is called in the existing literature the Lane-Emden-Fowler equation and arises in the boundary-layer theory of viscous fluids (see [4], [5], [6], [8] and the references given there). In papers [4] and [8] it is assumed that f(x) depends "almost" radially on x in the sense that

$$c_1p(|x|) \leq f(x) \leq c_2p(|x|),$$

where $c_1 > 0$ and $c_2 > 0$ are constants and p(|x|) is a positive function satisfying some integrability condition. The existence results are then obtained using the method of sub and supersolutions. In [5] the existence of positive solutions was obtained by replacing (1') with an equivalent operator equation which can be solved using the Schauder-Tichonov fixed point theorem. In this paper we develop ideas from paper [1], where the existence of weak solutions, in the case $g(x, u) = f(x)u^{-\gamma}$, $0 < \gamma < \infty$, has been considered. Here we consider more general nonlinearities g. Our method in based on approximation arguments. We first solve the Dirichlet problem in a bounded domain with zero boundary data. An entire solution is then obtained as a limit of solutions u_m of the Dirichlet problems on Ω_m , with $\{\Omega_m\}$ exhausting \mathbf{R}_n . The assumptions (g_1) and (g_2) ensure that solutions of the Dirichlet problem in a bounded domain Ω belong to $W_{10c}^{1,2}(\Omega) \cap C(\overline{\Omega})$. We also point out that under some additional