The spheres in symmetric spaces

Dedicated to Professor Noboru Tanaka on his sixtieth birthday

Tadashi Nagano and Makiko Sumi
(Received August 16, 1990, Revised December 25, 1990)

Introduction.

Our main purpose is to determine the totally geodesic spheres in every compact symmetric space. This includes finding of all the monomorphisms of the group $S U(2) \cong S^{3}$ into the compact Lie groups. The task is a part of the fundamental problem of determination of all the homomorphisms between symmetric spaces (1.1); a smooth mapping $f: M \rightarrow N$ between symmetric spaces is a homomorphism if and only if f is totally geodesic, provided M is connected.

Historically, the one dimensional case of S^{1} was done by E. Cartan himself [C]. The case of S^{3} overlaps with Dynkin's monumental work [D] in the part where he determines all the three dimensional complex subalgebras of the complex simple Lie algebras. Wolf [W] studied the case of the spheres in the real, complex and quaternion Grassmann manifolds $G_{n}\left(\boldsymbol{R}^{2 n}\right), G_{n}\left(\boldsymbol{C}^{2 n}\right)$ and $G_{n}\left(\boldsymbol{H}^{2 n}\right)$ under a certain condition to be explained later (4. 6), completing a work of Y.C. Wong. Helgason studied a sphere which corresponds to the highest root ([H], Chap. 7, § 11). Fomenko in [F-1], [F-2] and [F-3] discussed the homotopy and homology classes of totally geodesic spheres ; Fomenko's book [F-4] (English translation) has just appeared. Finally, the case of the zero dimensional sphere or the pair of points was done in [CN] and [$\mathrm{N}-1$]; in this case a homomorphism $f:\{0, \mathrm{p}\} \rightarrow N$ is characterized by the property that $f(p)$ is fixed by the point symmetry $s_{f(0)}$ at $f(o)$.

Our method is more geometric in a way, based on the theory under development (See [CN], $[\mathrm{N}-1]$ and $[\mathrm{N}-2]$) ; one can determine the spheres by using a huge induction mechanism coming from interrelationship between the symmetric spaces, at least all those spheres in certain classes (See the end of Section 1). The article [NS] might serve as another introduction.

In § 1 we will explain our geometric method along with basic concepts. Careful reading of this section and the next will help understand

