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This paper provides new approaches to two old results in the study of
conformal mappings of Euclidean space.

Part 1. Liouville’s theorem on conformal maps

Liouville’s theorem states that a conformal map between open sets in
a Euclidean space E^{n}-n\geq 3 may be extended, after allowing that the map
might take on the point at infinity as a value, to a global conformal map;
and that the group of such conformal maps is finite dimensional. We
show how to simplify the standard proofs of this theorem using an elemen-
tary but apparently new observation that the normal curvature of a curve
in a hypersurface changes in a very transparent way under conformal
mappings.

There are two common ways of stating Liouville’s result. For the
first, recall that the inversions, dilations, translations, and orthogonal
rotations on E^{n}\cup\{\infty\} generate a finite dimensional group called the
M\"obius group, M(n) .

THEOREM 1. For n\geq 3 , any conformal map of open sets in E^{n} is the
restriction of an element of M(n) .

For the second statement, we identify the conformal structure on E^{n}

with that of the sphere (with one point deleted). We then identify S^{n}

with the standard hyperquadric of homogeneous signature (n+1,1) in the
real projective space P^{n+1} of one higher dimension and produce an action
of Q(n+1,1) on the sphere and thus on the extended Euclidean plane.

THEOREM 2. For n\geq 3 , any conformal map of open sets in E^{n} is the
restriction of an element of O(n+1,1) . For n\geq 3 and n odd, the group
of conformal maps is isomorphic to SO (n+1, 1) . For n\geq 3 and n even,

the group of conformal maps is isomorphic to (O(n+1,1)/Z)\ltimes Z for a
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