Un théorème d'équivalence en géométrie symplectique

Pierre MOLINO (Received May 8, 1990)

Introduction

La formulation moderne du *problème d'équivalence* d'Elie Cartan pour les structures transitives est due en particulier à C. Ehresmann [4], P. Libermann [12], D. Spencer [17], V. Guillemin [6], V. Guillemin-S. Sternberg [8][9] et I. Singer-S. Sternberg [16]. Rappelons également les contributions dans ce domaine de H. Goldschmidt-D. Spencer [5], A. Kumpera-D. Spencer [11], T. Morimoto [14], et spécialement N. Tanaka [18][19][20]. On utilisera ici les notations et les méthodes développées dans C. Albert-P. Molino [2], auxquels on renvoie pour les détails. Toutes les structures sont supposées de classe C^{∞} .

M sera une n-variété modèle munie d'un point base 0, Γ un pseudogroupe de Lie régulier transitif (PLT) de difféomorphismes locaux de M. Bour $k \ge 1$, soit E_M^k l'orbite de l'action naturelle de Γ sur le fibré B^kM des repères d'ordre k modelés sur M (k-jets en 0 de difféomorphismes locaux de M) qui contient le k-jet 0^k de l'identité. On obtient ainsi la suite de définition $E_M^{\infty} = (E_M^k)_{k \ge 1}$ de Γ , formée de fibrés de repères se projetant les uns sur les autres. Pour tout k, E_M^k est un G_k -sous-fibré principal de B^kM , et la restriction à E_M^k de la forme fondamentale θ_M^k de B^kM a pour image en chaque point le même sous-espace m_{k-1} de l'espace $J_0^{k-1}TM$ des (k-1)-jets en 0 de champs de vecteurs sur M. Les champs de vecteurs locaux de M qui engendrent des éléments de Γ sont appelés Γ -champs (locaux). Leurs germes forment un faisceau d'algèbres de Lie appelé pseudoalgèbre de Lie (PAL) de Γ , et noté \mathcal{L}_{Γ} . Les relevés dans $B^{k}M$ de ces germes forment un faisceau relevé \mathcal{L}^k_Γ admettant pour orbites les composantes connexes de E_M^k . L'espace m_{k-1} n'est autre que l'espace des (k-1)-jets en 0 de Γ-champs. On sait que, si k est supérieur à *l'ordre* k_0 de Γ , la donnée de E_M^k suffit à déterminer Γ (respectivement \mathcal{L}_{Γ}) comme le PLT de ses automorphismes locaux (resp. le faisceau de ses germes d'automorphismes infinitésimaux locaux); si l'on veut, $E_M^{k_0}$ représente les équations de Γ et de \mathscr{L}_{Γ} .

Soient maintenant V une autre variété de dimension n, B^kV le fibré