Some translation planes of order 11^2 which admit SL(2, 9)

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday Nobuo NAKAGAWA (Received July 13, 1989, Revised August 10, 1990)

1. Introduction

Let G be a nonsolvable subgroup of the linear translation complement of a translation plane Π of order q^2 with kernel GF(q) where q is a power of a prime p, and let G_0 be a minimal nonsolvable normal subgroup of G. In [5] Ostrom pointed out the following theorem which is proved by using a work of Suprunenko and Zalesskii [7].

THEOREM A. If $G_0/Z(G_0)$ is simple and if p>5, then $G_0/Z(G_0)$ must be PSL(2,5), PSL(2,9), or $PSL(2,p^s)$ for some positive integer s.

If $G_0/Z(G_0)$ is isomorphic to $PSL(2, p^s)$, Π is a Desarguesian plane, a Hall plane, a Hering plane or a Schaffer plane(Walker [8], [9] and Schaffer [6]). At the case that $G_0/Z(G_0)$ is isomorphic to PSL(2,9), Mason proved the following theorem in [4].

THEOREM B. If $G_0/Z(G_0)$ is isomorphic to A_6 , there are exactly two isomorophic classes of planes Π with kernel GF(7). If H is the translation complement of Π and D the kernel of Π , then in one case we have $H/D \cong$ A_6 , while in the second we have $H/D \cong S_6$.

We have studied about the case that the kernel of Π is GF(11). Our result will be described by a following theorem which is proved at the end after much preparation.

THEOREM C. Let Π be a translation plane of dimension 2 over its kernel and the linear translation complement C has a normal subgroup G such that $G/Z(G) \cong S_6$. Then there are exactly three isomorphism classes of planes Π with kernel GF(11). If D is the kernel of Π , then C = DG.

Notation is standard, and follows that of [2]. For a permutation group M on Ω , we put $M_x = \{g \in M \mid xg = x\}$ where x is an element of Ω , and for a group H, we put $Cl_H(x) = \{g^{-1}xg \mid g \in H\}$ where x is an element of H. We write S^{Ω} and A^{Ω} for a symmetric and alternative group on Ω . In Section 2 we shall study the group G, its representations and spreads