On oblique derivative problems for fully nonlinear second-order elliptic PDE's on domains with corners

Paul DUPUIS^{1) 2)} and Hitoshi ISHII¹⁾ (Received November 1, 1989, Revised July 10, 1990)

§1. Introduction

This note is a sequel to our study [4] of oblique derivative problems for fully nonlinear elliptic PDE's on nonsmooth domains.

Let Ω be a bounded open subset of \mathbb{R}^{N} . We assume that Ω may be represented as

(1.1)
$$\Omega = \bigcap_{i \in I} \Omega_i,$$

where *I* is a finite index set and the Ω_i 's are domains of \mathbb{R}^N with relatively regular boundary. For $x \in \partial \Omega$ we denote by I(x) the set of those indices *i* which satisfy $x \in \partial \Omega_i$. Let $\{\gamma_i\}_{i \in I}$ be a set of vector fields on \mathbb{R}^N and $\{f_i\}_{i \in I}$ a set of real functions on $\partial \Omega \times \mathbb{R}$. We assume that each γ_i is oblique to Ω_i on $\partial \Omega_i$, i. e., $\langle \gamma_i(x), n_i(x) \rangle > 0$ for $x \in \partial \Omega_i$, where $n_i(x)$ denotes the outward unit normal vector of Ω_i at x.

We consider the fully nonlinear elliptic PDE

(1.2) $F(x, u, Du, D^2u)=0$ in Ω ,

together with the oblique derivative conditions

(1.3)
$$\frac{\partial u}{\partial \gamma_i} + f_i(x, u) = 0 \text{ for } x \in \partial \Omega \text{ and } i \in I(x).$$

Here u represents a real unknown function on $\overline{\Omega}$, F is a given real function on $\overline{\Omega} \times \mathbf{R} \times \mathbf{R}^N \times \mathbf{S}^N$, where \mathbf{S}^N denotes the space of $N \times N$ real symmetric matrices with the usual ordering, and Du and D^2u denote the gradient and Hessian matrix of u, respectively.

Our basic assumption on F is the degenerate ellipticity. That is, we assume that

¹⁾ Supported in part by grant No. AFOSR-85-0315 while visiting the Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, Rhode Island, U. S. A.

²⁾ Supported in part by the NSF under grant DMS-8902333.