On P-Galois extensions of rings of cyclic type

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Kazuo KISHIMOTO (Received August 31, 1989)

§ 1. A relative sequence of homomorphisms P and a P-Galois extension.

Let *B* be a ring with an identity 1 and *A* a subring of *B* with common identity 1 of *B*. In [6], the author studied on a relative sequence of homomorphisms *P* of $End(B_A)$ and a *P*-Galois extension B/A. In this paper we shall study on constructive *P*-Galois commutative extensions of cyclic type as an application of the works of [6].

For the convenience of readers, we shall summarized notions and several properties of a relative sequence of homomorphisms P and a P-Galois extension. The details and proofs will be seen in [6].

Let $P = \{D_0 = 1, D_1, \dots, D_n\}$ be a finite subset of $End(B_A)$ and let P be a poset with respect to the order \leq . For D_i and D_j in P, $D_i \gg D_j$ means that D_i is a cover of D_j , that is, $D_i > D_j$ and no $D_k \in P$ such that $D_i > D_k > D_j$.

P(min) (resp. P(max)) is the set of all minimal (resp. maximal) elements of P.

For $D_i \in P$, a chain of D_i means a descending chian in P such that $D_i = D_{i_0} \gg \dots \gg D_{i_m}$, $D_{i_m} \in P(min)$,

and m+1 is said to be the length of the chain.

(I) P is said to be a relative sequence of homomorphisms if it satisfies the following conditions (A. 1)-(A. 4) and (B. 1)-(B. 4):

(A. 1) $D_i \neq 0$ for all $D_i \in P$ and P(min) coincides with all $D_i \in P$ such that D_i is a ring automorphism.

(A.2) The length of each chain of D_i is unique and denotes it by $ht(D_i)$.

(A. 3) $D_i D_j \in P$ if $D_i D_j \neq 0$ and if $D_i D_j = 0$ then $D_j D_i = 0$.

(A. 4) Assume $D_i D_j$ and $D_i D_k$ are in P.

(i) $D_i D_j \ge D_i D_k (resp. D_j D_i \ge D_k D_i)$ if and only if $D_j \ge D_k$.

(ii) If $D_i D_j \ge D_m$ then $D_m = D_s D_t$ for some $D_s \le D_i$ and $D_t \le D_j$.