A property of spectrums of measures on certain transformation groups

Hiroshi YAMAGUCHI (Received July 19, 1989)

§1 Introduction.

Let X be a locally compact Hausdorff space. Let $C_0(X)$ be the Banach space of continuous functions on X which vanish at infinity, and let M(X) be the Banach space of complex-valued bounded regular Borel measures on X with the total variation norm. Let $M^+(X)$ be the set of nonnegative measures in M(X). For $\mu \in M(X)$ and $f \in L^1(|\mu|)$, we often write $\mu(f) = \int_X f(x) d\mu(x)$. Let X' be another locally compact Hausdorff space, and let $S: \dot{X} \to X'$ be a continuous map. For $\mu \in M(X)$, let $S(\mu) \in$ M(X') be the continuous image of μ under S. We denote by $\mathscr{B}(X)$ the σ -algebra of Borel sets in X. $\mathscr{B}_0(X)$ means the σ -algebra of Baire sets in X. That is, $\mathscr{B}_0(X)$ is the σ -algebra generated by compact G_{δ} -sets in X.

Let G be a LCA group with dual \hat{G} . M(G) and $L^1(G)$ denote the measure algebra and the group algebra respectively. For $\mu \in M(G)$, $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ . m_G denotes the Haar measure of G. Let $M_a(G)$ be the set of measures in M(G) which are absolutely continuous with respect to m_G . Then by the Radon-Nikodym theorem we can identify $M_a(G)$ with $L^1(G)$. For a subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. For a closed subgroup H of G, H^{\perp} stands for the annihilator of H.

Let (G, X) be a (topological) transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. That is, suppose that there exists a continuous map $(g, x) \rightarrow g \cdot x$ from $G \times X$ onto X with the following properties:

- (1.1) $x \rightarrow g \cdot x$ is a homeomorphism on X for each $g \in G$ and $0 \cdot x = x$, where 0 is the identity element in G;
- (1.2) $g_1 \cdot (g_2 \cdot x) = (g_1 + g_2) \cdot x$ for $g_1, g_2 \in G$ and $x \in X$.

We note that $(g, x) \rightarrow f(g \cdot x)$ is a Baire function on $G \times X$ for each Baire function f on X. For $\lambda \in M(G)$ and $\mu \in M(X)$, define $\lambda * \mu \in M(X)$ by