The lifespan of classical solutions to nonlinear wave equations in two space dimensions

Rentaro AGEMI and Hiroyuki TAKAMURA (Received December 2, 1991)

§1. Introduction

In the present paper we study the lifespan of solutions to initial value problems for nonlinear wave equations of the form

(1.1)
$$\begin{aligned} \partial_t^2 u(x,t) - \Delta u(x,t) &= A |u(x,t)|^p, \ (x,t) \in \mathbf{R}^n \times [0,\infty), \\ u(x,0) &= f(x), \ \partial_t u(x,0) = g(x), \ x \in \mathbf{R}^n, \end{aligned}$$

where p and A are positive constants and n=2, 3.

F. John [6] has proved the following remarkable results in three space dimensions. The global classical solution to (1.1) exists for small initial data with compact support provided $p > p_0(3) = 1 + \sqrt{2}$, and the life-span of classical solution to (1.1) is finite provided 1 , <math>f=0, g>0 (also see F. John [7], p. 32). Here $p_0(n)$ stands for the positive root of the quadratic q(n, p)=0 where

(1.2)
$$q(n, p) = \frac{n-1}{2}p^2 - \frac{n+1}{2}p - 1$$

and the lifespan of a solution u to (1, 1) means the largest T such that $u(x, t) \in C^2(\mathbb{R}^n \times [0, T))$. He also proved in [6] that the lifespan T_{ε} of solutions to (1, 1) with $f(x) = \varepsilon \varphi(x)$ and $g(x) = \varepsilon \psi(x)$ is equivalent to ε^{-2} for p=2. Recently H. Lindblad [9] has refined this result by showing that the following limit exists for 1 :

$$\lim_{\varepsilon \to +0} \varepsilon^{-p(p-1)/q(3,p)} T_{\varepsilon}.$$

R. T. Glassey [3] has proved in two space dimensions that the global solution to (1.1) exists for small initial data with compact support provided $p > p_0(2)$. R. T. Glassey [4] proved that if $1 then the lifespan of a solution to (1, 1) is finite. Moreover, J. Schaeffer [10] proved that the lifespan is finite for critical values <math>p = p_0(2)$ and $p_0(3)$.

The main aim of this paper is to look for the upper and lower bounds