A variant of a Yamaguchi's result

Catherine FINET and Valérie TARDIVEL-NACHEF (Received November 5, 1991, Revised May 19, 1992)

Introduction

Yamaguchi extended the classical F. and M. Riesz theorem to a transformation group such that a compact abelian group acts on a locally compact Hausdorff space. In fact, he proved the following theorem.

THEOREM A. [5, Theorem 2.4] Let (G, X) be a transformation group in which G is a compact abelian group and X is a locally compact Hausdorff space. Let σ be a positive Radon measure on X that is quasi-invariant and let Λ be a Riesz set in \hat{G} . Let μ be a measure in $\mathcal{M}(X)$ with spec $\mu \subset \Lambda$. Then spec μ_a and spec μ_s are both contained in spec μ , where $\mu = \mu_a + \mu_s$ is the Lebesgue decomposition of μ with respect to σ .

Let us recall that a subset Λ of \hat{G} is a Riesz set if $\mathscr{M}_{\Lambda}(G) \subset L^{1}(G)$ (where $\mathscr{M}_{\Lambda}(G)$ denotes the space of measures in $\mathscr{M}(G)$ whose Fourier transforms vanish off Λ). With this terminology, the classical F. and M. Riesz theorem asserts that N is a Riesz subset of \mathbb{Z} .

Godefroy introduced and studied the notion of nicely placed and Shapiro sets [2]. Let us recall the definitions.

DEFINITION 1. [2]

1. A subset Λ of \widehat{G} is said nicely placed if the unit ball of $L^{1}_{\Lambda}(G)$ is closed in measure.

2. A subset Λ of \hat{G} is said Shapiro if every subset of Λ is nicely placed.

The Alexandrov's example shows that there exists a Riesz subset Λ of \mathbb{Z} which is not nicely placed [2]: take $\Lambda = \bigcup_{n=0}^{\infty} D_n$, where $D_n = \{k2^n, |k| \le 2^n, k \ne 0\}$. On the other hand of course \mathbb{Z} is nicely placed in \mathbb{Z} but not Riesz in \mathbb{Z} .

But Godefroy proved that every Shapiro set is a Riesz set [2].

Our aim is to show that the conclusion of theorem A also holds for another class of subsets Λ of \hat{G} : the nicely placed subsets. More precise-

^oThis work was supported by CGRI-FNRS-CNRS-grant.