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1. Introduction

All groups we consider are finite. It is well known that the product
of two supersolvable normal subgroups is not supersolvable in general
(see Huppert [3]).

In [2]. Baer proved that if G is the product of two supersolvable
normal subgroups and the commutator subgroup G’ of G is nilpotent, then
G is supersolvable.

In [1]. Asaad and Shaalan proved the following generalization of
Baer’s theorem:

Suppose that H and K are supersolvable subgroups of G, G’ is nilpotent
and G=HK. Suppose further that H is permutable with every subgroup
of K and K is permutable with every subgroup of H. Then G is super-
solvable.

Further, they proved the following result:

Suppose that H is a nilpotent, K a supersolvable subgroup of G and G=
HK. Suppose further that H is permutable with every subgroup of K and
K is permutable with every subgroup of H. Then G is supersolvable.

If H and K are subgroups of a group G such that H is permutable
with every subgroup of K and K is permutable with every subgroup of H,

we say that H and K are mutually permutable and we say that H and K
are totally permutable if every subgroup of H is permutable with every
subgroup of K.

The purpose of the present communication is the presentation of some
properties of products of mutually permutable subgroups:

THEOREM A. Let G=HK>1 be a group where H and K are mutu-
ally permutable. Then H or K contains a nonidentity normal subgroup of
G or F(G)\neq 1 , where F(G) denotes the Fitting subgroup of G.

Further we present a generalization and give independent proofs of
the above mentioned results of Asaad and Shaalan in the following sense:


