p-supersolvability of factorized finite groups

Angel CAROCCA (Received July 3, 1991, Revised September 4, 1991)

1. Introduction

All groups we consider are finite. It is well known that the product of two supersolvable normal subgroups is not supersolvable in general (see Huppert [3]).

In [2]. Baer proved that if G is the product of two supersolvable normal subgroups and the commutator subgroup G' of G is nilpotent, then G is supersolvable.

In [1]. Asaad and Shaalan proved the following generalization of Baer's theorem :

Suppose that H and K are supersolvable subgroups of G, G' is nilpotent and G = HK. Suppose further that H is permutable with every subgroup of K and K is permutable with every subgroup of H. Then G is supersolvable.

Further, they proved the following result :

Suppose that H is a nilpotent, K a supersolvable subgroup of G and G = HK. Suppose further that H is permutable with every subgroup of K and K is permutable with every subgroup of H. Then G is supersolvable.

If H and K are subgroups of a group G such that H is permutable with every subgroup of K and K is permutable with every subgroup of H, we say that H and K are mutually permutable and we say that H and Kare totally permutable if every subgroup of H is permutable with every subgroup of K.

The purpose of the present communication is the presentation of some properties of products of mutually permutable subgroups :

THEOREM A. Let G=HK>1 be a group where H and K are mutually permutable. Then H or K contains a nonidentity normal subgroup of G or $F(G) \neq 1$, where F(G) denotes the Fitting subgroup of G.

Further we present a generalization and give independent proofs of the above mentioned results of Asaad and Shaalan in the following sense :