An F. and M. Riesz theorem on locally compact transformation groups

Hiroshi YAMAGUCHI Dedicated to Professor TSUYOSHI ANDO on his sixtieth birthday (Received May 2, 1991)

§1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz theorem as follows.

THEOREM A (cf. [12, 8.2.3. Theorem]). Let G be a compact abelian group with ordered dual, i. e., there exsits a semigroup P in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$. Let μ be a measure in M(G)such that $\hat{\mu}(\gamma) = 0$ for $\gamma < 0$. Then

(I) $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for $\gamma < 0$; (II) $\hat{\mu}_s(0) = 0$.

Theorem A (I) was extended, by the author ([13]) and Hewitt-Koshi -Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [7, Theorem D]). Let G be a LCA group and P a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let μ be a measure in $M_p(G)$, where $M_p(G) = \{\nu \in M(G) : \hat{\nu} = 0 \text{ on } P^c\}$. Then μ_a and μ_s also belong to $M_p(G)$.

In Theorem B we can not expect " $\hat{\mu}_s(0)=0$ " in general. As pointed out in the proof of [13, Corollary], Theorem B follows from the following theorem.

THEOREM C (cf. [13, Main Theorem]). Let G be a LCA group and P a closed semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let μ be a measure in $M_{pc}(G)$. Then μ_a and μ_s also belong to $M_{pc}(G)$.

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (\mathbf{R}, X) be a (topological) transformation group, in which the reals \mathbf{R} acts on a locally compact Hausdorff space X. Let σ be a positive Radon measure on X that is quasi -invariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposi-