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§1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz theo-
rem as follows.

THEOREM A (cf. [12, 8.2.3. Theorem]). Let G be a compact abelian
group with ovdered dual, i. e., therve exsits a semigroup P in G such that
(i) PU(=P)=G and (it) PN(—P)={0}. Let p be a measure in M(G)
such that 1(y)=0 for y<0. Then

(1) idy)=@as(y)=0 for y<0;

(I1) @s(0)=0.

Theorem A (1) was extended, by the author ([13]) and Hewitt-Koshi
-Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [ 7, Theorem D]).
Let G be a LCA group and P a semigroup in G such that PU(—P)=G.
Let u be a measure in My(G), where Mp(G)={veM(G): =0 on P°).
Then pe and us also belong to My(G).

In Theorem B we can not expect “fs(0)=0" in general. As pointed
out in the proof of [13, Corollary], Theorem B follows from the following
theorem.

THEOREM C (cf. [13, Main Theorem]). Let G be a LCA group and
P a closed semigroup in G such that PU(—P)=G. Let p be a measure in
Mp(G). Then pa and us also belong to Mp(G).

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (R, X) be a (topological)
transformation group, in which the reals R acts on a locally compact Haus-
dorff space X. Let o be a positive Radon wmeasure on X that is quasi
~invariant. Let pEM(X), and let p=pq+ s be the Lebesgue decomposi-



