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\S 1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz the0-
rem as follows.

THEOREM A (cf. [12, 8. 2. 3. Theorem]). Let G be a compact abelian
group with ordered dual, i. e. , there exsits a semigroup P in \hat{G} such that
(i) P\cup(-P)=\overline{G} and (i) P\cap(-P)=\{0\} . Let \mu be a measure in M(G)

such that \hat{\mu}(\gamma)=0 for \gamma<0 . Then
(I) \hat{\mu}_{a}(\gamma)=\hat{\mu}_{S}(\gamma)=0 for \gamma<0 ;
(II) \hat{\mu}_{S}(0)=0 .

Theorem A ( I) was extended, by the author ([13]) and Hewitt-Koshi
-Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [7- Theorem D] ).
Let G be a LCA group and P a semigroup in \hat{G} such that P\cup(-P)=\hat{G} .
Let \mu be a measure in M_{p}(G) , where M_{p}(G)= { \nu\in M(G):f/=0\wedge on P^{c}}.
Then \mu_{a} and \mu_{s} also belong to M_{p}(G) .

In Theorem B we can not expect “
\hat{\mu}_{S}(0)=0’

’ in general. As pointed
out in the proof of [13, Corollary], Theorem B follows from the following
theorem.

THEOREM C (cf. [13, Main Theorem]). Let G be a LCA group and
P a closed semigroup in \hat{G} such that P\cup(-P)=\hat{G}. Let \mu be a measure in
M_{pc}(G) . Then \mu_{a} and \mu_{s} also belong to M_{pc}(G) .

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (R, X) be a (topological)

transformation group, in which the reals R acts on a locally compact Haus-
dorff space X. Let \sigma be a positive Radon measure on X that is quasi
-invariant. Let \mu\in M(X) , and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposi-


