Extension of local direct product structures of normal complex spaces

Akihiro SAEKI (Received April 23, 1991)

§ 0. Introduction

In [GM], Gómez-Mont defined foliations by curves on complex spaces. Let X be a complex space of pure dimension n and non-singular in codimension one, i. e. the singular locus $\operatorname{Sing} X$ is of codimension strictly greater than one. $X\backslash\operatorname{Sing} X$ is a (not necessarily connected) complex manifold of dimension n. We consider a pair (\mathcal{F}_A, A) , where A is an analytic set in X of codimension strictly greater than one and containing $\operatorname{Sing} X$ and \mathcal{F}_A is a holomorphic foliation of complex dimension one on $X\backslash A$. (Note that $X\backslash A$ is an n-dimensional complex manifold.) Two pairs (\mathcal{F}_A, A) , $(\mathcal{F}_{A'}, A')$ are said to be equivalent if there exists an analytic set B of X of codimension strictly greater than one which contains $A \cup A'$, and if two foliations $\mathcal{F}_A|_{X\backslash B}$ and $\mathcal{F}_{A'}|_{X\backslash B}$ on $X\backslash B$ coincide with each other. A foliation \mathcal{F} by curves on X is an equivalence class of such a pair (\mathcal{F}_A, A) . Note that if X is normal and connected then X is pure dimensional and non-singular in codimension one.

After Gómez-Mont's definition, we may say that the "simplest" foliation by curves on X is defined by a pair (\mathscr{F}_A, A) such that \mathscr{F}_A is a direct product, i. e. for an (n-1)-dimensional complex manifold M and a Riemann surface S.

$$X \setminus A \simeq M \times S$$

as complex manifolds.

In this parer, we confine our interest to the local case and investigate the following problem:

PROBLEM 0.0.

Let X be a complex space and $x_0 \in X$. Suppose that there are an open neighborhood $U \subset X$ of x_0 , an analytic set A in U, a complex space V and a Riemann surface W satisfying the following conditions:

- a) $x_0 \in A$,
- b) codimA > 1 (in U) and