Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type

M. KIRANE (Received March 1, 1990)

1. Introdution

In recent years several results have been published concerning blow-up of solutions to semilinear parabolic and hyperbolic equations. We mention here the works [1]-[7] and their references.

A special attention was given not only to the description of the set of blow-up points but also to the description of the behaviour of the solutions near the blow-up points as time tends to the blow-up time [3]-[6].

All these papers dealt with semilinear parabolic and hyperbolic equations with classical boundary conditions, i. e, Dirichlet's, Neumann's and Robin's conditions.

In the present work blow-up results and characterization of the blowup set (Bus) in the case of particular geometries are established for semilinear parabolic and hyperbolic equations of the following types:

	$\triangle u = 0$	in $D \times (0, \infty)$,
(P1)	$\partial u/\partial t + k\partial u/\partial \eta = h(x, t, u)$ $u(x, 0) = u_0(x)$	on $S \times (0, \infty)$, on S .
(P2)	$ \Delta u = 0 \frac{\partial^2 u}{\partial t^2} + k \frac{\partial u}{\partial \eta} = f(u) u(x, 0) = u_0(x) \frac{\partial u}{\partial t(x, 0)} = u_1(x) $	in $D \times (0, \infty)$, on $S \times (0, \infty)$, on S , on S .
(P3)	$\partial u/\partial t - \bigtriangleup u = u^{1+lpha}$ $\partial u/\partial t + k\partial u/\partial \eta = u^{1+lpha}$ $u(x, 0) = u_0(x)$	in $D \times (0, \infty)$, on $S \times (0, \infty)$, in \overline{D} .

Here *D* is a bounded domain in \mathbb{R}^{N} ($N \ge 1$) with smooth boundary *S* and outer unit normal vector field η , \triangle is the Laplace operator with respect to the space variables and $\partial/\partial \eta$ the outward normal derivative to *S*. The constants α and k are assumed to be positive.

The functions h and f are assumed to satisfy :