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Introduction
In this paper we classify the infinite dimensional simple graded Lie

algebras of finite depth over an algebraically closed field K of characteris-
tic zero.

A graded Lie algebra (GLA)
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is a Lie algebra \mathfrak{g} endowed with

a gradation \{\mathfrak{g}_{p}\}_{p\in Z} such that dim \mathfrak{g}_{p}<\infty and [\mathfrak{g}_{p}, \mathfrak{g}_{q}]\subset \mathfrak{g}_{p+q} . It is called
simple if the underlying Lie algebra \mathfrak{g} is simple. We say a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

is of finite depth if the negative part \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} is finite dimensional. Note

that a GLA of finite depth having at least dimension two and no proper
graded ideal is simple (see \S 1). Note also that a simple GLA is necessar-
ily transitive (a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is called transitive if for x\in \mathfrak{g}_{p}(p\geq 0) ,

[x, \mathfrak{g}_{-}]=0 implies x=0).
Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a simple GLA of finite depth. According to Cartan’s

classification of the simple infinite transitive pseudogroups, or rather
according to its algebraic version, i . e. , classification of the primitive
infinite Lie algebras, completed by many authors (in particular, Singer-
Sternberg [SS65], Kobayashi-Nagano [KN66], Guillemin-Quillen-Sternberg
[GQS66], MorimotO-Tanaka [MT70] ) , we see that the underlying Lie alge-
bra \mathfrak{g} is isomorphic to one of the following series of simple Lie algebras:

1) W(m) : the Lie algebra of all the polynomial vector fields \sum_{i=1}^{m}P_{i}\partial/

\partial x_{i} with P_{i}\in K[x_{i},\ldots,x_{m}] .
2) S(m) : the subalgebra of W(m) consisting of the vector fields

which preserve the differential form dx_{1}\wedge\ldots\wedge dx_{m}(m\geq 2) ;
3) H(n) : the subalgebra of W(m) consisting of vector fields which

preserve the differential form \sum_{i=1}^{n}dx_{i}\wedge dx_{n+i} , m=2n :
4) K(n) : the subalgebra of W(m) consisting of vector fields which

preserve the differential form dx_{m}- \sum_{i=1}^{n}x_{i+n}dx_{i}(m=2n+1) up to the

multicative factors in K[x_{1},\ldots,x_{m}] .


