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\S 0. Introduction

In this article we consider the graph as a topological space or a CW

complex and define some kinds of standard embeddings of the graphs into
the 3-dim. Euclidean space R^{3} or the 3-sphere S^{3} and discuss the prop-

erty. For example, for a knot or a link we can define the standard em-
bedding the trivial knot or the trivial link. And although, by Fox’s TheO-
rem, for any finite graph G there is a spatial graph \overline{G} of G such that the
complementary space of the interior of a regular neighborhood of \tilde{G} is
homeomorphic to a handlebody with genus equal to the rank H_{1}(G:Z) ,

this spatial graph is not suitable to the “ standard ” spatial graph in gen-

eral (see Figure 6). Furthermore the image of any embedding of the com-
plete graph with n vertices, \tilde{K}_{n} , contains a non-trivial link for n\geqq 6 and
contains a non-trivial knot for n\geqq 7([2]) . So if we adopt as the definition
of the standard embedding a spatial graph (i. e . the embedded image of
the graph) which does not contain a non-trivial knot or link, the definition
can not apply to all finite graph. Although there are concepts of minimal
genus, maximal genus and thickness in the graph theory ([1]), [11] ) , these
concepts do not satisfy the properties which should be satisfied by the “

standard ” embedding from view point of the knot theory. That is, the
graph theoretical properties of the above are weak for the “ standard ”

embedding from the knot theory. For example, although two spatial

graphs of the complete graph K_{5} of Figure 4 and 5 are both on the torus

but the first one does not contain any non-trivial knot and the second one
contains a trefoil knot.

From the knot theory, the properties which should be satisfied by the
“ standard embedding ” (or the “ standard spatial graph ”) are the follow-
ing ;

Let G be a finite graph and \overline{G} be a “standard ” spatial graph of G .

Then


