KO-theory of Hermitian symmetric spaces

Akira KONO and Shin-ichiro HARA (Received January 21, 1991) Dedicated to Professor Haruo Suzuki on his 60th birthday

§1. Introduction

Our purpose of this paper is the determination of *KO*-theory of the compact irreducible Hermitian symmetric spaces. The spaces are classified by E. Cartan as follows:

AIII $M_{m,n} = U(m+n)/(U(m) \times U(n))$		
BDI Qn	$=SO(n+2)/(SO(n)\times SO(2))$	$(n \ge 3)$
CI	Sp(n)/U(n)	$(n \ge 3)$
DIII	SO(2n)/U(n)	$(n \ge 4)$
EIII	$=E_{6}/(Spin(10) \cdot T^{1})$	$(Spin(10) \cap T^1 \cong \mathbb{Z}_4)$
EVII	$=E_7/(E_6 \cdot T_1)$	$(E_6 \cap T^1 \cong \mathbb{Z}_3).$

Bott showed their cohomology rings have no torsion and no odd dimensional part. The integral cohomology rings are determined by [2], [9] and [10], while the actions of the squaring operations on them are determined in [5]. In [6], we compute the KO-theory of $M_{m,n}$. Here we show:

THEOREM 1. Let X be a compact irreducible Hermitian symmetric space, then its Atiyah-Hirzebruch spectral sequence for $KO^*(X)$:

 $E_r^{*,*}(X) \Rightarrow KO^*(X)$

has nontrivial differential d_r only for r=2.

Let $H^*(X)$ be the modulo 2 cohomology ring of X. When the odd dimensional parts of $H^*(X)$ are trivial, $Sq^2Sq^2(=Sq^3Sq^1)$ vanishes on $H^*(X)$, and $(H^*(X), Sq^2)$ is a differential module. For the proof of Theorem 1 we compute the (co)homology group $H(H^*(X); Sq^2)$, which is isomorphic to $E_3^{*,-1}(X)$, and show the differentials d_r $(r \ge 3)$ are trivial for each X.

By Theorem 1, $KO^*(X)$ is obtained from $E_3^{*,*}(X)$. Consequently the groups $H^*(X)$ and $H(H^*(X), Sq^2)$ determine $KO^*(X)$ in the following corollary.