On a division ring with discrete valuation

Kozo Sugano
(Received September 8, 1993, Revised December 14, 1993)

Throughout this paper A will be a division ring with non-trivial valuation v, and C will be the center of A. A has the completion with respect to the v-topology, which is also a division ring. We will denote it by A^{*}. For each division subring B of A the closure of B in A^{*} with respect to the v-topology will be also denoted by $B^{*} . B^{*}$ is isomorphic to the completion of B as topological ring.

The aim of this paper is to show that B^{*} coincides with the double centralizer of B in A^{*} for each division C-subalgebra B of A, in the case where A is finite over C and v is discrete.

In this paper we will use the same terminology as [4] and [6]. In particular for each division subring B of A we write

$$
O(B)=\{x \in B \mid v(x) \leqq 1\}, P(B)=\{x \in B \mid v(x)<1\} .
$$

Let v be non-archimedean and B an arbitrary division subring of A. $O(B)$ is a local ring with the maximal ideal $P(B)$. Hence $O(B) / P(B)$ is a division ring, which will be denoted by $E(B)$. Write $E(B)=K$ and $E(A)=E$. Then K is a division subring of E. We will write $f_{r}(A / B)=$ $[E: K]_{r}, f_{l}(A / B)=[E: K]_{l}$ and $e(A / B)=\left[v\left(A^{\circ}\right): v\left(B^{\circ}\right)\right]$, where A° and B° are the unit groups of A and B, respectively. In the case where $[E: K]_{l}$ $=[E: K]_{r}$, we will write $f(A / B)$ in stead of $f_{r}(A / B)$ or $f_{l}(A / B)$. Note that we have $e\left(A^{*} / A\right)=f\left(A^{*} / A\right)=1$ by Proposition 17.4 and Corollary 17.4 b [4]. Furthermore the Domination Principle, that is, $v(x)<v(y)$ implies $v(x+y)=v(y)$, holds also for a division ring with non-Archimedean valuation (See § 17.2 [4]).

The next lemma is well known in the case where A is a commutative field, and holds also in the case where $v \mid B$ is trivial

Lemma 1. Let A, B and v be as above, then we have $e(A / B)$ $f_{r}(A / B) \leqq[A: B]_{r}$. If $[A: B]_{r}<\infty$, both $e(A / B)$ and $f_{r}(A / B)$ are finite.

Proof. Since $v(a b)=v(a) v(b)=v(b) v(a)=v(b a)$ for any $a, b \in A$, and the Domination Principle holds for A, we can follow the same lines as the proof of Theorem 4.5 Chap. 2 [2].

