Exotic circles of $PL_{+}(S^{1})$

Hiroyuki MINAKAWA

(Received January 6, 1995; Revised March 3, 1995)

Abstract. Let G be a subgroup of $Homeo_+(S^1)$. An exotic circle of G is a subgroup of G which is topologically conjugate to SO(2) but not conjugate to SO(2) in G. This shows us the subgroup G is far from being a Lie group. In this paper, we prove that $PL_+(S^1)$ has exotic circles.

Key words: exotic circle, $PL_{+}(S^{1})$, topologically conjugate, PL conjugate, bendeng point.

Introduction

Let G be a Lie group and M an oriented manifold of class $C^k (1 \le k \le \infty)$. Let $\mathrm{Diff}_+^k(M)$ denote the group of all C^k diffeomorphisms of M. A topological action is a continuous map $\varphi: G \times M \to M$ such that

- 1) $\varphi_e(x) = x$,
- $2) \varphi_{gh}(x) = \varphi_g(\varphi_h(x)).$

where e is the unit of G and $\varphi_g(x) = \varphi(g, x)$. D. Montgomery and L. Zippin proved the following theorem ([4]).

Theorem 0.1 Let φ be a topological action. If every φ_g belongs to $\operatorname{Diff}_+^k(M)$ then φ is a map of class C^k .

In the case where $G=M=S^1$, this theorem implies the following corollary.

Corollary 0.2 If every $h \circ R_x \circ h^{-1}$ is contained in $\text{Diff}_+^k(S^1)$, then h belongs to $\text{Diff}_+^k(S^1)$. Here, $R_x : S^1 \to S^1$ is the rotation of S^1 , i.e., $R_x(y) = x + y$.

Indeed, for $\varphi(x,y) = h \circ R_x \circ h^{-1}(y)$. $\varphi: S^1 \times S^1 \to S^1$ is a topological action with $\varphi_x \in \text{Diff}_+^k(S^1)$. Then φ is of class C^k by Theorem 0.1. Fix a point y_0 and define the C^k diffeomorphism φ of S^1 by $\varphi(x) = \varphi(x,y_0)$. Then we can see easily $\varphi^{-1} \circ \varphi_x \circ \varphi = R_x$. So $\varphi^{-1} \circ h = R_z$ for some $z \in S^1$. This implies h belongs to $\text{Diff}_+^k(S^1)$.

Let $SO(2) = \{R_x | x \in S^1\}$ be the group of all rotations of S^1 . Corollary

¹⁹⁹¹ Mathematics Subject Classification: 58E40, 58F03.