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Gr\"otzsch ring and quasiconformal distortion functions
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Abstract. The authors obtain improved estimates for the modulus of the Gr\"otzsch

ring, derive sharp bounds for the Schwarz distortion function in the plane, and indicate

some extensions to higher dimensions.
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1. Introduction and Notation

Let R_{G,n}(s) denote the Gr\"otzsch ring in \mathbb{R}^{n} , n\geq 2 , which is bounded
by the unit sphere S^{n-1} and the ray { (x_{1}, x_{2}, \ldots, x_{n})\in \mathbb{R}^{n} : x_{1}>s , x_{j}=0 ,
2\leq j\leq n\} , s>1 . The conformal capacity of R_{G,n}(s) is denoted by

\gamma_{n}(s)=capR_{G,n}(s) , (1.1)

and the modulus M_{n}(r) of R_{G,n}(1/r) , 0<r<1 , is defined by

M_{n}(r)=[\omega_{n-1}/\gamma_{n}(1/r)]^{1/(n-1)} , (1.2)

where \omega_{n-1} is the (n-1)-dimensional surface area of the unit sphere S^{n-1}

in \mathbb{R}^{n} . These functions are important in the study of distortion properties
of quasiconformal mappings [G , I , Vu1-2, AVV1-4, PI].

The function M_{2}(r) is usually denoted by \mu(r) , and has the explicit
expression [LV , p. 60]

\mu(r)=\frac{\pi}{2}\frac{\mathcal{K}’(r)}{\mathcal{K}(r)} , (1.3)

where

\mathcal{K}(r)=\int_{0}^{\frac{\pi}{2}}(1-r^{2}\sin^{2}t)^{-\frac{1}{2}}dt , \mathcal{K}’(r)=\mathcal{K}(r’) ,

r’=(1-r^{2})^{\frac{1}{2}},0<r<1 , are complete elliptic integrals of the first kind
[BF, Bo, BB]. We also need the complete elliptic integrals of the second
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