2-Type flat integral submanifolds in $S^{7}(1)$

Christos Baikoussis ${ }^{1}$ and David E. Blair

(Received October 3, 1994; Revised December 13, 1994)

Abstract

This paper determines all flat, mass-symmetric, 3-dimensional 2-type submanifolds of the unit sphere $S^{7}(1)$ which are integral submaniifolds of the canonical contact structure.

Key words: integral submanifolds, finite type submanifolds.

1. Introduction

In [5,6] Bang-Yen Chen introduced the notion of submanifolds of finite type. Let M be a submanifold of Euclidean space E^{n} and Δ the Laplacian of the induced metric. M is said to be of finite type if its position vector field x has a decomposition of the form

$$
x=x_{0}+x_{1}+\cdots+x_{k}
$$

where x_{0} is a constant vector and $\Delta x_{i}=\lambda_{i} x_{i}$. Assuming the λ_{i} to be distinct we say that M is of k-type.

The theory of finite type submanifolds has become an area of active research. The first results on this subject have been collected in the book [6]; for a recent survey, see [7]. In particular, there is the problem of classification of low type submanifolds which lie in a hypersphere. Far from being solved in general, there are many partial results which contribute to the solution of this problem. For instance, by the well-known result of Takahashi [10], 1-type submanifolds are characterized as being minimal in a sphere.

However, classification of even 2-type spherical submanifolds seems to be virtually impossible. A compact submanifold M^{n} of a hypersphere S^{m} of E^{m+1} is said to be mass-symmetric if the center of mass of M^{n} in E^{m+1} is the center of S^{m} in E^{m+1}. Note that the only 2 -type surface in S^{3} is the flat torus $S^{1}(a) \times S^{1}(b), a \neq b$, while a 2 -type mass-symmetric integral surface in S^{5} is locally the product of a circle and a helix of order 4 , or

[^0]
[^0]: ${ }^{1}$ This work was done while the first author was a visiting scholar at Michigan State University.

 1991 Mathematics Subject Classification : 53C25, 53C40, 53C15.

