Interpolating sequences and embedding theorems in weighted Bergman spaces

Masahiro Yamada

(Received August 16, 1995; Revised October 30, 1995)

Abstract. For $0 , let <math>L^p{}_a(\mu)$ denote the weighted Bergman space on the unit disk D in the complex plane, where μ is a finite positive Borel measure on D. When μ is an absolutely continuous measure which satisfies an (A_p) -condition, we study interpolating sequences on $L^p{}_a(\mu)$ and give several sufficient conditions in order that such a sequence exists in $L^p{}_a(\mu)$. Using them, we obtain embedding theorems for weighted Bergman spaces between $L^p{}_a(\mu)$ and $L^q{}_a(\nu)$, where ν is a finite positive Borel measure on D and $0 < q < \infty$.

Key words: interpolating sequence, (A_p) -condition, Carleson inequality, Bergman space, analytic function.

1. Introduction

Let D denote the open unit disk in the complex plane and H a set of all analytic functions on D. For $0 , let <math>L^p(\mu)$ denote an L^p -space on D with respect to a finite positive Borel measure μ on D and set $L^p_a(\mu) = L^p(\mu) \cap H$, which is called a weighted Bergman space on D.

For any a in D, let ϕ_a be the Möbius function on D, that is, $\phi_a(z) = (a-z)/(1-\overline{a}z)$ $(z \in D)$, and put $\beta(a,z) = 1/2\{\log(1+|\phi_a(z)|)(1-|\phi_a(z)|)^{-1}\}$ $(a,z \in D)$. For $0 < r < \infty$ and a in D, let $D_r(a) = \{z \in D; \beta(a,z) < r\}$ be the Bergman disk with "center" a and "radius" r, and m be the Lebesgue area measure on D. We define an average of a finite positive measure μ on $D_r(a)$ by

$$\widehat{\mu}_r(a) = \frac{1}{m(D_r(a))} \int_{D_r(a)} d\mu \quad (a \in D),$$

and if there exists a non-negative function w in $L^1(m)$ such that $d\mu = wdm$, then we may write it \widehat{w}_r instead of $\widehat{\mu}_r$.

Let ν and μ be finite positive Borel measures on D, and for 0 < p, $q < \infty$, let $i: L^p{}_a(\mu) \to L^q{}_a(\nu)$ be an inclusion mapping. Our purpose of this paper is to study a necessary and sufficient condition on ν and μ so