On a certain property of closed hypersurfaces with constant mean curvature in a Riemannian manifold, II

Tsunehira Koyanagi

(Received September 8, 1995)

Abstract. In this paper, we discuss some properties of a closed hypersurface whose first mean curvature is constant, in a Riemannian manifold admitting a special concircular scalar field.

Key words: hypersurface with constant mean curvature, special concircular scalar field, umbilic point, beging isometric to a sphere.

1. Introduction

Y. Katsurada [2] proved.

Theorem 1.1 (Katsurada) Let \mathbb{R}^{n+1} be an (n+1)-dimensional Einstein manifold which admits a proper conformal Killing vector field ξ^i , that is, a vector field generating a local one-parameter group of conformal transformations, and V^n a closed orientable hypersurface in \mathbb{R}^{n+1} such that

(i) its first mean curvature H_1 is constant,

(ii) the inner product $C^i \xi_i$ has fixed sign on V^n ,

where C^i and ξ_i denote the normal vector to V^n and the covariant components of the conformal Killing vector field ξ respectively. Then every point of V^n is umbilic.

To prove Theorem 1.1, we need integral formulas of Minkowski type for a hypersurface in a Riemannian manifold in which the conformal Killing vector field plays the same role as the position vector in a Euclidean space.

We can prove that if every point of a closed orientable hypersurface in a Euclidean space is umbilic, then the hypersurface is isometric to a sphere. However, in a Riemannian manifold, we can not expect the result of the same kind even if every point of a closed orientable hypersurface is umbilic. On this problem, she [3] also proved the following two Theorems:

¹⁹⁹¹ Mathematics Subject Classification : 53C40.