Algorithm of the arithmetic-geometric mean and its complex limits

(Dedicated to Professor Rentaro Agemi on his sixtieth birthday)

Kimimasa Nishiwada
(Received May 27, 1996)

Abstract

The algorithm of the arithmetic-geometric mean defines a sequence converging to its complex limit. We prove that the correspondence between those sequences and their nonzero limits is one-to-one. Our method utilizes a new proof of a certain structural theorem of the arithmetic-geometric mean. In the process, our proof clarifies the relationship of the three aspects of our problem: patterns of the algorithm leading to various arithmetic-geometric means, a subgroup of $\pi_{1}(\mathbb{C} \backslash\{0,1\})$ and the modular group $\Gamma_{2}(4)$.

Key words: arithmetic-geometric mean, modular group.

1. Introduction and the main result

The study of the arithmetic-geometric mean of two complex numbers was started by Gauss. However, its various aspects were brought to light only by later mathematicians (e.g. von David [7] and Geppert [2]). Especially in Cox [1] was given a thorough exposition on a structural theorem of the complex means, as well as a good account of its historical background. In the present paper we are concerned with the same subject, but focusing our attention on a question not touched in the above works.

Let us begin with the famous algorithm leading to an arithmetic-geometric mean. With complex numbers a and b we consider

$$
a_{0}=a, \quad b_{0}=b,
$$

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}+b_{n-1}}{2}, \quad b_{n}=\left(a_{n-1} b_{n-1}\right)^{1 / 2}, \quad n=1,2, \ldots \tag{AG}
\end{equation*}
$$

A sequence $\left\{\left(a_{n}, b_{n}\right)\right\}(n=0,1, \ldots)$ is called an agm-sequence for (a, b), if it satisfies the above algorithm. Because of two possible choices of b_{n} at every step of the algorithm there are infinitely many such agm-sequences for (a, b). It is well known that for any agm-sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ both sequences

